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Abstract

We study the role of collaboration networks in the U.S. market for early-

career scientists. In 2014, about 21% of PhD graduates found their first job

at a university where their advisor had a co-author—a threefold increase from

1990. Such connections more than double the probability of finding a job at a

given university, even after controlling for unobserved factors at the level of PhD

class–hiring university pair and for the topical fit between the PhD graduate’s

dissertation and research at the hiring university. We observe a sizable citation

premium for graduates placed through the advisor’s network. However, when

comparing graduates hired at the same university, the productivity premium is fully

explained by public information on the productivity of the PhD graduate and their

advisor at the time of graduation. These results suggest that PhD advisors do not

convey additional private information about match quality or the PhD graduate’s

productivity in their collaboration network. While the estimated role of network-

based placements has doubled from 1990 to 2014, the citation premium for network

hires has remained constant.
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The size of research teams and inter-university collaboration networks has grown

substantially over the last decades (Fortunato et al., 2018; Wuchty, Jones and Uzzi, 2007;

Jones, 2009; Freeman, Ganguli and Murciano-Goroff, 2014). Because of the importance

of social connections in academic labor markets (Rose and Shekhar, 2023; Hadlock and

Pierce, 2021), increasing inter-university collaboration can reshape how the labor market

for early-career researchers works. However, existing evidence on this topic is limited,

often focusing on specific fields or periods. We aim to fill this gap by providing systematic

evidence on the role of collaboration networks in hiring PhD graduates at universities.

Our analysis spans all research fields and covers the increase in collaboration from 1990

to 2014.

One reason for the reliance on networks in hiring is that social connections can solve

an information problem (Rees, 1966): Because neither the firm nor the job candidate

can observe all relevant aspects of the match, social connections can convey information

that reduces search costs. Nevertheless, whether network hiring leads to better matches

remains unclear. In an optimistic view, referrers promote candidates that are a good

fit for the job, benefitting workers and firms by increasing their options and match

productivity. In a pessimistic view, referrers may exploit their relationship with the

employer to promote underperforming candidates, resulting in nepotism and inefficient

matches. In the market for early-career researchers, PhD advisors are well-positioned to

act as referrers, leveraging their private knowledge of graduates and their connections

with hiring universities. Thus, whether network hiring through PhD advisors’ co-author

connections outperforms other hiring channels in selecting productive matches is theo-

retically and empirically unclear.

To address this, we examine whether network hires are more productive than their

peers and assess whether connections convey additional private information beyond what

is publicly available at the time of PhD graduation. Understanding the role of co-

author connections in hiring practices provides insights into their impact on match quality

and aggregate research productivity—an increasingly relevant issue as advisors’ networks

expand.
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To investigate whether the rising number of co-author connections systematically

influences PhD graduates’ placement at universities and their productivity outcomes, we

build a database on the research careers of PhD graduates. We track graduates starting

from their dissertations (Proquest, 2023) and follow their affiliations and research output

through publications in the Microsoft Academic Graph (Microsoft, 2021).

We estimate a multinomial logit model to show that advisors’ collaboration networks

predict where PhD graduates secure their first jobs. Specifically, having a connection to a

university through the advisor’s network doubles the probability of a graduate being hired

by that university. These results are precise and robust, and they account for systematic

hiring patterns at the PhD class × hiring university level as well as for the similarity

between the graduate’s research topics and those of the hiring universities.

The estimated effect of a single connection on placement remains stable, even as

the number of connected universities and the overall influence of networks have grown.

Between 1990 and 2014, the predicted impact of advisors’ networks in placing graduates

has doubled. Notably, systematic matching predicted by connections explains half of all

placements at connected universities

To estimate the role of co-author connections in matching PhD graduates with uni-

versities, we build on the approach of Eliason et al. (2022). Their linear model and our

multinomial logit model are very similar, except for the functional form assumption; an

advantage of the latter is that it is consistent with matching models like Choo and Siow

(2006).

Our estimates of the effect of advisors’ co-author connections on matching have a

causal interpretation, assuming that no unobserved factors simultaneously determine the

advisor’s network connections and the graduate job placement relative to their peers.

These factors must be unobserved to analysts but known to market participants even

without network connections. This assumption is consistent with those in many existing

referral studies (Burks et al., 2015; Brown, Setren and Topa, 2016; Kramarz and Thesmar,

2013), with one exception being Rajkumar et al. (2022) who conduct an experiment on

LinkedIn. In line with a causal interpretation, we show that placebo advisor connections
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do not predict matches and that the estimated connection effect diminishes with time

since the last collaboration.

After demonstrating that co-author connections predict at which universities PhD

graduates continue their research careers, we then focus on the productivity of network

hires. We find that graduates hired by a university within their advisor’s co-author

network produce more output after graduation than non-connected hires. However,

theory implies that the screening benefits of network hiring do not necessarily increase

productivity unconditionally, but rather conditional on public information at the time

of hiring. We thus examine the extent to which such information can account for the

productivity premium of network hires.

When comparing graduates within the same PhD class, we find that those placed at a

university where their advisor has a co-author receive 27% more citations than those with

a non-connected first placement. We then add controls for publicly available information

about the graduate’s productivity—the number of pre-graduation papers weighted by

the citation impact of their venues—and for the advisor’s productivity, measured by

their citation decile within the field. Accounting for these factors reduces the productivity

premium of network hires by half. The remaining productivity premium of network hires,

after accounting for publicly available information, reflects both selection on graduate

ability and the effects of placement at different universities.

To eliminate the role of the first placement itself, we then compare graduates with

the same first post-PhD affiliation. Among PhD graduates hired at the same university,

connected hires produce 11% more citations than those without a connection. Controls for

public information explain the entire productivity premium of network hires, suggesting

that connected hires are positively selected in terms of expected productivity compared

to their colleagues at the same hiring university but that this selection does not reflect

private information. The approximately zero premium of network hires holds in terms of

several additional measures, including the number of papers they write, the number of co-

authors at their first affiliation, and the probability of staying active in research. These

results show that network hires outperform on average, but there is no evidence that
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co-author connections reveal who performs better post-PhD compared to other hiring

channels.

Our paper contributes to the literature on the role of networks in academic labor

markets. A novel feature in our paper is the use of natural language processing to control

for the topical fit between PhD graduates and hiring universities.

The most closely related study is by Rose and Shekhar (2023), who document the

importance of the advisor’s network centrality for placement. In contrast to their paper,

we focus on individual connections between authors and examine the productivity of

connected graduates. Further, they focus on the impact of the advisor’s centrality on a

PhD graduate, but here, the focus is on the performance of network hiring compared to

other hiring channels. Our results are similar to Baruffaldi, Visentin and Conti (2016)

from Science&Engineering PhD students—one career stage earlier than the one we study.

In addition, there is a tendency for finance departments to repeatedly hire from the same

PhD programs (Hadlock and Pierce, 2021). This suggests that the total extent of network

hiring through social connections is likely larger than what we document for co-author

connections. The focus on co-author connections, though, is motivated by the rise of

teamwork in research.

Malmgren, Ottino and Nunes Amaral (2010) and Ma, Mukherjee and Uzzi (2020)

highlight that mentors and PhD advisors specifically are predictive of success in academic

careers. Our evidence is consistent with this, while we highlight the specific role co-author

connections of PhD advisors play in the placement of early career researchers.

The academic environment has been shown to be important for research output

(Azoulay, Liu and Stuart, 2017; Way et al., 2019). Similarly, Smeets, Warzynski and

Coupé (2006) document the placement and subsequent performance of Economics PhD

graduates based on which PhD program they come from. These results highlight the

importance of considering the academic environment in the analysis of post-PhD out-

comes, in order not to confound the role of network hiring with the general academic

environment.

Terviö (2011) and Clauset, Arbesman and Larremore (2015) document systematic
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hiring flows at the level of PhD granting × hiring university pair. Their results highlight

the need to flexibly account for unobserved hiring determinants at the level of PhD class

× hiring university pair to isolate the role played by individual co-author connections.

Our paper further contributes to the empirical literature on networks in the broader

labor market (Dustmann et al., 2016; Brown, Setren and Topa, 2016). San (2022)

estimates a matching model to study the role of parents’ co-workers. He exploits the

structure of the matching model to uncover worker productivity from observed wages

and allocations. An advantage of our setting is that we can document the productivity

of network hires directly. Additionally, our focus is not on the labor market outcomes

of individual workers, but rather on the benefits of network hiring from the employers’

perspective. We follow a similar approach to Burks et al. (2015) who document broadly

similar patterns with productivity data in a general labor market setting. In our setting,

we can observe pre- and post-hiring productivity measures that are specific to the job.

This allows us to approximate productivity information about candidates available to

hiring committees.

Finally, our results relate to theories about networks in the labor market: Our results

indicate that the network does not reveal private information about match productivity

(Dustmann et al., 2016; Simon and Warner, 1992; Galenianos, 2013). Further, even

though we find that the productivity of the advisor can explain part of the productivity

premium of network hires, our evidence is not in line with homophily-based models

(Montgomery, 1991): There, network hiring enables firms to hire more productive workers

on dimensions that are otherwise unobservable (Hensvik and Skans, 2016). However,

in our setting, the advisor’s productivity is publicly observable to all universities—

independently of the network connection. This implies that all universities can use the

advisor’s productivity as a signal for the graduate’s future output.
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1 Theoretical Background

We review the main theoretical predictions of different mechanisms underlying network

hiring1. We focus on two primary outcomes: First, whether a match is formed between

graduate i and university j. Second, the productivity of connected hires compared to

hires from other channels. For this purpose, consider the following decomposition of

productivity into unobservable components:

yi,j = ai + bj + fi,j, (1)

where ai refers to the candidates’ "ability", bj the universities’ "quality" and fi,j is a

match-specific productivity component.

The simplest theory of network hiring is that information about the presence of

vacancies and candidates is transmitted through the network without giving any direct

information about any component of yi,j or other match-relevant payoffs. Thus, infor-

mation transmitted through networks may simply reduce search frictions and directly

increase the matching probability within the network.

In addition, social connections can help screen candidates. On one hand, connections

may reveal private information about match-specific productivity fi,j (Simon and Warner,

1992; Galenianos, 2013; Dustmann et al., 2016). These theories assume that employers

can screen connected workers with higher precision. Additional private information about

connected hires implies higher productivity above and beyond what would be expected

based on public information. In many situations, this also implies a higher probability of

matching.

On the other hand, Montgomery (1991) considers the screening aspect when hiring

workers not through referrals directly, but through connections alone. The key idea is

that the firm knows who their best workers are, and if there is homophily in connections,

the friends of these good employees are more productive on average. These productivity

gains can stem from the candidate’s unobserved ability ai and the match-specific term
1We largely build upon Topa (2011) in this review, who also discuss predictions regarding wages in

further detail.
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fi,j and suggest a situation in which, conditional on public information, network hiring

is prevalent, selective, and associated with higher average productivity.

In contrast, Cornell and Welch (1996) describe a situation of "screening discrimina-

tion". Their model allows for discrimination to occur even when the underlying quality

distribution of candidates is known, and there is no match-specific productivity fi,j to

learn about. The key assumption is that own-group candidates are easier to screen. This

implies that from the perspective of a given employer, the posterior belief about own group

candidates has fatter tails and thus implies that the candidate they believe to be most

qualified is more likely to come from their own group. This happens even when all market

participants know that the unconditional distribution of qualities is the same across

groups. Applying their insights to network hiring suggests that hiring connected PhD

graduates can be common if universities obtain additional information about candidates’

quality ai. The conditional posterior belief of universities about connected graduates

has fatter tails despite the average network hire across all universities being of the same

quality as non-network hires. This mechanism rationalizes a situation where network

hiring is prevalent, but connected hires are not necessarily positively selected on realized

productivity conditional on public information.

Theories of moral hazard apply when a hiring university can punish the sender of the

referral—the PhD advisor—if the referred graduate performs poorly (Heath, 2018). In

such a situation a hiring university could offer stronger incentives to network hires. This

theory is most relevant when the sender of the referral is in close contact with the hiring

party. In the current situation, the hiring university has limited control over the PhD

advisor, and the PhD advisor has limited control over the PhD graduate after graduation.

Therefore, we expect these mechanisms to have limited importance for the role of PhD

advisors in the market for early career researchers.

Finally, consider the case where PhD advisors have private incentives to place their

graduates, leading them to refer candidates who might otherwise struggle to secure an

academic position. This implies a negative selection in terms of ai among network

hires. Beaman and Magruder (2012) provide evidence in line with this mechanism
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from an experimental recruitment setting for casual jobs. Their findings suggest that

the incentives to refer less qualified candidates complicate using referrals as an effective

screening tool.

In sum, theories of network hiring generally imply a higher likelihood of a match

within the network. Further, if social connections help screen candidates, then network

hires should outperform other hires, conditional on public information. However, as PhD

advisors have private incentives to place students, it is possible that they negatively select

referrals, which can overturn the informational benefits of network hiring.

This paper’s empirical analysis begins by estimating the role of PhD advisors’ col-

laboration networks in PhD graduates’ first placements. Motivated by the theoretical

ambiguity surrounding network-based hiring, we then examine the productivity of net-

work hires compared to their peers, focusing on whether public information explains the

selection of network hires or whether a residual productivity premium of network hires

remains.

2 Data

To track publication outcomes, affiliations, and co-author networks of PhD graduates and

their advisors, we combine data on PhD dissertations with a comprehensive bibliographic

database. The first data set is ProQuest Dissertations & Theses Global (PQDT)TM,

which provides information on PhD dissertations (Proquest, 2023). This data includes

the names of PhD graduates and their advisors, the PhD-granting universities, and the

titles and abstracts of the theses. The second data set is the Microsoft Academic Graph

(MAG), which contains information on papers, authors, their affiliations, and citation

links (Microsoft, 2021; Sinha et al., 2015; Wang et al., 2019).

Using the fuzzy matching algorithm dedupe (Gregg and Eder, 2022), we link PhD

graduates as well as their advisors to their respective publication careers in MAG. The

algorithm is trained with active learning: we label the potential links that the algorithm

is least certain about. Links are identified when two records in the two data sets have
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similar features. For graduates, this means a similar name, keywords, paper titles, as well

as starting their publication career around the year of PhD graduation. For advisors, this

means a similar name, affiliation name, as well as publishing activity around the student’s

graduation year.

We discuss the data processing and the quality of the data in more detail in Appendix

A.1. First, both data sources are of high quality. The US Library of Congress uses

ProQuest, and MAG’s coverage of scientific works is comparable to data sources such

as Scopus and Web of Science and has been used in previous studies (Huang et al.,

2020). Second, while the active learning nature of our linking algorithm prevents us from

calculating precision and recall that are representative of the linked sample, we show

evidence of good precision and recall with two approaches. For advisors, who tend to

be established researchers, we calculate a recall of about 0.75 across fields of study and

years, assuming all advisors have a corresponding author entity in MAG. For chemistry

graduates, who tend to publish during their PhD (Gaulé and Piacentini, 2013), we check

whether the PhD-granting university is the same as the affiliation recorded on publications

during the PhD. Using this information, which was not used during linking, we find a

lower bound on the precision of linking of 0.78.

Our sample consists of PhD graduates from US universities who received their degrees

between 1990 and 2014 and whom we linked to an author in MAG. Based on information

in PQDT, we assign graduates to fields. We follow the MAG classification of scientific

work into a hierarchical structure of fields. Level 0 groups all research into 19 fields, such

as Physics, Biology, and Psychology. We further use the classification at level 1, which

includes examples such as Thermodynamics, Econometrics, and Virology; we will refer

to these as subfields throughout. There are 292 subfields in total.

We link universities in PQDT and affiliations in MAG to the Carnegie Classification of

Institutions of Higher Education (American Council on Education, 2021). This allows us

to identify institutions consistently across the two datasets. We consider only placements

at institutions included on the Carnegie list, which we will refer to from now on as US

universities.
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We restrict the sample to graduates who (i) publish at least once within the first

seven years after graduating and (ii) do so with an affiliation to a US university other

than their PhD-granting university. Additionally, we limit our analysis to graduates for

whom we have linked at least one advisor to MAG.

As hiring universities, we define for each graduate the set of universities that hire

at least one graduate in the graduate’s dissertation field within a five-year window of

graduation. For example, for a biology graduate from Harvard in 1991, the set of hiring

universities consists of all universities that hired at least one graduate in our sample of

Biology PhD graduates from 1990 to 1994.

We define a graduate’s first affiliation as the first university, other than their PhD-

granting institution, listed as their affiliation on papers published between one and seven

years after earning their PhD.

We construct each graduate’s connections to universities based on their own and their

advisor’s co-authors. Co-authors are identified from all authors on papers published up

to 20 years before the graduate’s degree year. We include papers classified as “Journal,”

“Book,” “Book Chapter,” and “Conference.” A university is considered connected through

the advisor if the advisor has a co-author affiliated with that university—namely, if it is

the co-author’s most recent affiliation and if it was recorded within five years before the

student’s graduation. If there are multiple advisors listed on a dissertation, we record

co-author connections of all advisors. Connections through the PhD graduate’s own

collaborations are defined analogously.

As outcomes for the post-PhD analysis, we summarize the count and 10-year forward

citations of all papers in the first 7 years after graduating. We again include papers

classified as “Journal,” “Book,” “Book Chapter,” and “Conference.” Further, we count the

number of new co-authors at the first post-PhD affiliation, i.e., those the graduate did not

co-author with up to the degree year. Researchers are assigned affiliations annually based

on the most frequently recorded affiliation across their papers that year. The citations

of graduate’s first affiliations are calculated as the sum of 10-year forward citations for

all papers published in the 10 years preceding graduation, at that university and in the
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graduate’s dissertation field.

We construct additional control variables based on PhD graduates’ and their advisors’

output during the PhD. First, we sum PhD graduates’ publications, weighted by the

average 10-year forward citations of all publications in the degree year of the publication

venue. This measure is intended to capture the signal contained in the venue of the

graduate’s publication, as their own papers have had little time to accumulate citations.

We create a dummy variable for graduates without publications, and among the remaining

graduates, we use a dummy for the graduate’s quintile in their field and cohort distribution

(e.g., within biology in 1990–1994). Second, we construct the PhD advisor’s decile in the

citation distribution of advisors within the respective research field and within a five-year

interval before graduation. For each advisor, we include only citations received within the

10 years up to and including the graduation year. For graduates with multiple advisors,

we use the advisor listed first to construct control variables.

The alignment of the topics of graduates’ dissertations and the research at hiring

universities is likely an important determinant of hiring decisions and co-authorship.

To account for topical alignment empirically, we compute topic vectors for graduates’

dissertations and research output at hiring universities within the same field. Topics are

based on the Fields of Study in the MAG hierarchy and are derived from the abstract

text in dissertations and publications using Microsoft’s language model (Wang et al.,

2020, section 2.5), ensuring consistency in the topic definition across PQDT and MAG.

We use the model’s predicted topics and scores for each document to construct its topic

vector. For the analysis, we use Fields of Study up to level 2 in the MAG field hierarchy,

representing detailed topic areas2. We then calculate two cosine similarities: First,

the similarity between a graduate’s dissertation topic vector and the aggregated topic

vector for their field at the hiring university. Second, the maximum similarity between

the graduate’s dissertation topic vector and individual researchers’ vectors in that field

affiliated with the hiring university. See Appendix A.7.2 for further details and Appendix
2There are 137,188 Fields of Study at level two, in addition to the 292 subfields (MAG level 1) and

19 fields (MAG level 0).
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B.2.6 for descriptive statistics of the similarity measures.

Table 1: Summary statistics

Baseline Advisor in MAG Connected Not Connected
Variable first affiliation first affiliation
Degree Year 2004 2004 2006 2004
Year First pub post PhD 2.91 2.88 2.57 2.96
Class Size 21.80 22.47 26.57 21.54
Link Score Student 0.97 0.98 0.97 0.98
Link Score Advisor 0.98 0.98 0.98
Connected Advisor 0.17 0.94 0
Connected Own Co-author 0.04 0.2 0
N Affiliation Connections

through advisor 9.69 18.38 7.71
through co-author 2.03 3.86 1.62

Outcomes
Cites 7y post PhD 364 363 578 314
Papers 7y post PhD 11.46 11.55 14.60 10.85
Co-authors first affil 3.99 4.02 6.64 3.42
First Affil 6y post PhD 0.59 0.59 0.49 0.61
Active 6y post PhD 0.89 0.89 0.87 0.89
Cites first affil 11,109 11,308 27,611 7,596

Observations
N PhD Graduates 98,866 82,279 15,257 67,022
N PhD Graduates ×

hiring institutions 37,095,809 31,435,851 5,846,391 25,589,460

Notes: The baseline sample consists of PhD graduates in the Proquest Dissertations&Theses
database from US universities included in the Carnegie Classification who graduated between
1990 and 2014 and who published at least once after their graduation with an affiliation that
is not their PhD granting university. The column Advisor in MAG refers to PhD graduates for
whom we have advisor information and have found a link to the Microsoft Academic Graph for
the advisor. The rows Link Score Student and Link Score Advisor are the confidence scores about
the identified links between entities. The scores are predicted values from the linking model of
whether the records in PQDT and MAG refer to the same record. See Appendix A.1 for further
information.

Table 1 shows summary statistics for the sample of linked PhD graduates. Each

column shows the statistics for a different sample: the first column is for the baseline

sample of PhD graduates; the second column is for those with a linked advisor—our anal-

ysis sample. Columns 3 and 4 split this sample into those with a network connection to
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their first affiliation and those without. In Appendix A.7.1 we show the field composition

of our sample. As our sample of graduates is not a random sample across fields, we will

show the main results also separately by field.

The baseline sample of graduates linked to MAG consists of 98,866 graduates, for

82,279 of whom we have advisor information and could link the advisor to MAG. This

is our analysis sample. In Appendix A.7 we show that our sample represents 7.4% of

all PhD graduates in the PQDT dataset during the sampling period. The sample is

not a representative sample of all US PhD graduates, but limited to those continuing

an academic career in the US. This limits generalizability to graduates continuing their

career in other sectors or countries.

We group PhD graduates into PhD classes based on their PhD university × Field

× 5 year window3. For example, we group PhD graduates from Stanford University in

Computer Science in 1990-1994 into one PhD class and those graduating between 1995

and 1999 into a separate class. We only include graduates in our analysis sample in this

class definition.

The table shows that the linking algorithm we use to match PhD advisors and grad-

uates between PQDT and MAG is very certain about predicted links in all subsamples:

On average, the identified links have a score of 97% or more, and this is the same for

students and advisors independently of connection status.

In the primary sample, 17% of graduates have a co-author connection to their first

post-PhD affiliation through their advisor, and 4% through their own co-author network.

This indicates that network connections can be important for matching PhD graduates

to their first post-PhD affiliation, resonating with evidence reported by Brown (1965).

In Figure 1a, we show the share of PhD graduates in our analysis sample by connection

status to their first affiliation. The share of co-author connected placements has grown

rapidly and is dominated by the PhD advisors’ co-author connections. Figure 1b shows

the average number of connected universities by connection type. On average, a graduate

in 1990 was connected to 5 universities through their advisor, but a graduate in 2014 to
3Years are grouped into fixed windows, not rolling windows. That means we use year windows 1990-

1994, 1995-1999, ... to group PhD graduates into classes.
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15 universities. The number of connections to universities through PhD graduates’ own

co-authors have grown similarly but reached only 3 in 2014.
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Figure 1: Co-author connections and placement of PhD graduates

We will estimate to what extent co-author connections predict placement, controlling

for a variety of potential confounders, and to what extent the rising share of network

hires is driven by the increasing number of connections or by changes in the importance

of connections for matching.

Further, connected graduates are on average more productive than non-connected

graduates; this holds in terms of the number of papers, number of citations, or year to

first publication post-PhD. We will return to this pattern in the empirical section where

we control for a range of confounders and discuss possible explanations.

3 Empirical Framework

We present the empirical framework used to investigate whether co-author connections

across universities systematically relate to the placement of PhD graduates and their

productivity.

Network connections and the first affiliation of PhD graduates To evaluate the

role of network connections in shaping PhD graduates’ transitions to their first post-PhD

affiliation, we estimate a multinomial logit model. This model specifies the probability

that a graduate i is matched with a hiring university j as:
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P (di,j = 1) = eαc(i),j+βXi,j+γAi,j∑
j′ eαc(i),j′ +βXi,j′ +γAi,j′

. (2)

In practice, we estimate the multinomial logit using a Poisson regression, which ensures

computational feasibility and is equivalent, as discussed in Appendix C.1. Notably, this

specification aligns with the equilibrium in matching models introduced by Choo and

Siow (2006). The estimation of such models, including the possibility of using Poisson

regression, is discussed in Galichon and Salanié (2024). Appendix C.2 further discusses

this connection.

The variable Ai,j is a binary indicator that equals one if graduate i has a network

connection to university j. Our primary interest lies in the parameter γ, which quantifies

how much a network connection increases the probability of a match.

To move toward a causal interpretation of this parameter, we control as finely as

possible for factors that could influence both the probability of a match and the likelihood

of having a network connection.

First, the fixed effects αc(i),j account for factors that systematically impact hiring

flows between pairs of hiring universities and graduating classes. The fixed effects αc(i),j

capture the possibility that universities closer to each other—either geographically or in

terms of research interests—have more co-authorship connections and are more likely to

hire graduates from each other. They also account for overall labor demand of each hiring

university.

Second, we include controls Xi,j that vary between each PhD graduate and hiring

university. A key concern is specialization within fields: an advisor specializing in

molecular biology is likely to collaborate more with departments specializing in molecular

biology. The advisor’s students are also likely to work on molecular biology. Thus, they

are likely to be more attractive hires for other molecular biology-focused departments

compared to a student from the same class who specializes in plant biology. We use

topic similarity controls to account for such concerns, as introduced in Section 2. These

controls capture the topical alignment between the graduate’s research and the research

conducted at hiring universities.
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It is also important to discuss which confounders are not captured by our controls

and which could invalidate a causal interpretation of the network parameter γ. Such

confounding arises from factors that influence both the likelihood of having a connection

and the graduate’s matching outcome but are not accounted for by our controls. These

factors must be relevant within a PhD-class and hiring university pair and must influence

the matching outcome even in the absence of a connection. One example is ethnicity-

based homophily in collaboration connections—both in the graduate-advisor and advisor-

coauthor relationships—combined with an ethnicity-specific preference for locations. In

such a scenario, graduates would be more likely to match with universities where their

advisor has a co-author. This correlation would arise even if the advisor did not have a

direct connection with the university.

Assessing changes over time The stark rise in the number of connections to

universities highlights the possibility that the effect of a given connection changes over

time. Mechanically, if the number of connections increases over time, the probability of

a match through any single connection decreases at some point since graduates can only

have one first placement university. However, the overall probability of a match within

the network connections can increase over time. To test for changes in γ over time while

avoiding confounding differences over time with changes in the composition of fields, we

estimate the following multinomial logit model:

P (di,j = 1) = eαc(i),j+βXij+∆γAi,j×(t(i)−1990)∑
j′ eαc(i),j′ +βXij′ +∆γAi,j′ ×(t(i)−1990) (3)

We test whether ∆γ = 0. In addition to the baseline controls, we also account for

heterogeneity in network effects across fields and the number of connections. Specifically,

we control for a field-specific quadratic function of the number of connections Ni: γ0
Fi

Ai,j+

γ1
Fi

Ai,jNi + γ2
Fi

Ai,jN
2
i , where Fi is the dissertation field of graduate i. The number of

connections of the student to the potential hiring university are measured separately for

the PhD graduate’s own co-author connections and their advisor’s co-author connections.
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Post-PhD outcomes of network hires We compare the careers of PhD graduates

whose first affiliation is connected through a co-author to those whose first affiliation is

not connected. To analyze post-PhD outcomes yi, we use the following Poisson regression

framework:

yi = exp
(
αc(i) + αj(i) + βXi + γAi,j + ui

)
, (4)

where:

• j(i) is the first affiliation post-PhD of graduate i

• αc(i) is a fixed effect for the PhD class,

• αj(i) is a fixed effect for the first affiliation,

• Xi includes individual controls measured up to the time of graduation,

• Ai,j(i) indicates whether the graduate’s first affiliation post-PhD had a network

connection.

Our main interest lies in the parameter γ, which captures the difference in post-PhD

outcomes between graduates placed through the network and those not placed through the

network. By varying the fixed effects included when estimating equation (4), we analyze

the role of the network from the perspectives of both graduates and hiring universities.

First, we compare graduates within the same class by including a class fixed effect,

αc(i). Second, we compare new hires at the same university by including a first-affiliation

fixed effect, αj(i). This specification closely relates to studies examining productivity

outcomes within firms (Burks et al., 2015). Third, we combine these approaches by

simultaneously including both types of fixed effects.

We also assess the role of the students’ observable characteristics Xi. These variables

include measures of the graduate’s and their advisor’s research output during the PhD, as

described in Section 2. First, we control for the graduate’s productivity during the PhD,

measured as their publication output weighted by the average citations of the publication

venue. This measure reflects the graduate’s overall productivity during the PhD while
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accounting for the limited time their work has had to accumulate citations. Second, we

control for the advisor’s research prominence in the graduate’s research field.

The universities also observe similar information at the time of hiring. Our regres-

sions, with and without these controls, will indicate whether networks provide additional

information beyond these variables. This analysis closely relates to existing research

on network hiring with skill measures (Burks et al., 2015; Pallais and Glassberg Sands,

2016). However, there are two key differences to these earlier studies. First, we observe

an occupation-specific productivity measure instead of more general skills. Second, we

observe this measure not only for graduates but also for advisors, who can play an

important role in the referral process and for the graduates’ expected productivity.

Assessing changes over time We investigate whether the gap in post-PhD out-

comes between connected and non-connected graduates changed during our sampling

period by expanding the framework in equation (4):

yi = exp
(
αc(i) + αj(i) + βXi + γFi

Ai,j(i) + δAi,j(i) × (t(i) − 1990) + ui

)
, (5)

We are primarily interested in the parameter δ, which captures a linear trend in the

outcome gap between connected and non-connected graduates. Time t(i) refers to the

graduation year.

This specification addresses potential confounding of changes over time with com-

position change across fields in two ways. First, it accounts for variation in the gap

between connected and non-connected graduates across fields, captured by the field-

specific parameters γF . Second, the controls Xi include fixed effects at the level of

the graduate’s field × graduating year, capturing field-specific time trends in post-PhD

research outcomes during our sampling period.
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4 Results

We now present the main results of our analysis, examining the role of co-author connec-

tions in the hiring and career outcomes of PhD graduates. All regressions are estimated

with the fixest package in R (Bergé, 2018).

First, we estimate the effect of co-author connections on the graduate’s first academic

placement. Second, we compare the post-PhD career outcomes of graduates hired through

a network connection to those hired without one. In particular, we analyze whether

network-based hiring conveys additional private information beyond publicly available

signals at the time of PhD graduation. Throughout the analysis, while we focus on the

advisor’s connections, we also report results for the PhD graduates’ own connections.

4.1 Network connections and the first placement of PhD Grad-

uates

Table 2 shows the results from estimating equation (2). We estimate a multinomial logit

model, where each observation corresponds to a pair of a PhD graduate and a potential

hiring university and the outcome is whether the hiring university is the PhD graduates’

first affiliation post-PhD.

The first column shows a coefficient of 0.728 for the advisor connection, indicating

that a match between a graduate and a university is more than twice as likely if the

advisor has a co-author at the university. A co-author connection directly linked to the

PhD graduate yields an even larger estimated coefficient of 1.04. To inform about the

overall importance of PhD advisors’ and PhD graduates’ co-author connections, one also

needs to consider the number of connections. Before returning to this at the end of this

section, we now tighten the regression models to account for potential confounders that

drive co-author connections and placement.

In column 2, we add fixed effects for the class × (potential) hiring university pair.

The coefficient on the advisor connection is barely altered to 0.747. This specification

controls for any systematic matching determinants that vary at the level of the PhD

20



class × (potential) hiring university pair, for example, geographic distance or research

specialization within fields at the university level (e.g. specialization into plant biology).

In columns 3 and 4, we include controls for the research productivity of the PhD

student before graduation, the research productivity of the advisor, and the number of

connected universities. Each of these is interacted with the decile of the (potential) hiring

university’s citations within the field’s distribution. These controls account for systematic

differences in demand for PhD graduates across universities with varying levels of research

intensity. The estimated coefficients on both the advisor’s and the PhD’s connection are

hardly changed.
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Table 2: Multinomial Logit: Matching PhD Graduates to Universities

Panel A: Average effect of network connections on placement
Dependent Variable: Match formed
Model: (1) (2) (3) (4) (5)

Variables
Advisor connection 0.728 0.747 0.743 0.744 0.684

(0.025) (0.025) (0.025) (0.025) (0.023)
PhD connection 1.04 1.12 1.12 1.11 1.07

(0.037) (0.049) (0.049) (0.049) (0.048)

Fixed-effects
PhD Class×University ID Yes Yes Yes Yes
Advisor Citation Decile×University Citation Decile×Field Yes Yes Yes
Pre Graduation Productivity×University Citation Decile×Field Yes Yes
Connections Decile×University Citation Decile×Field Yes Yes

Additional controls with varying slopes
Max similarity to faculty members×Field Yes
Avg similarity to faculty members×Field Yes

Observations 650,527 650,527 650,527 650,527 650,527

Panel B: Assessing changes over time of the effect of network connections

Dependent Variable: Match formed
Model: (1) (2) (3)

Variables
Advisor connection 0.655

(0.046)
(Degree Year-1990) × Advisor connection 0.002 0.002 0.004

(0.003) (0.003) (0.003)
PhD connection 1.28

(0.119)
(Degree Year-1990) × PhD connection -0.012 -0.012 -0.005

(0.006) (0.006) (0.006)

Fixed-effects
PhD Class×University ID Yes Yes Yes
Advisor Citation Decile×University Citation Decile×Field Yes Yes Yes
Pre Graduation Productivity×University Citation Decile×Field Yes Yes Yes
Connections Decile×University Citation Decile×Field Yes Yes Yes

Additional controls (with varying slopes)
Max similarity to faculty members × Field Yes Yes Yes
Avg similarity to faculty members × Field Yes Yes Yes
Advisor connection × Field Yes Yes
PhD connection × Field Yes Yes
Advisor connection × N Advisor connection × Field Yes
PhD connection× N PhD connection × Field Yes
Advisor connection × N2 Advisor connection × Field Yes
PhD connection× N2 PhD connection × Field Yes

Observations 650,527 650,527 650,527

Notes: Unit of observation is a pair of PhD graduate and a hiring university. The sample is restricted to pairs of a PhD class (PhD
university×Field×5 year window) and hiring university with variation in the connection status of PhD graduates and where at least one
hire has occurred. See equation (2) for the multinomial logit specification for Panel A and equation (3) for Panel B. Clustered (PhD
university×Field×5 year window + hiring university) standard-errors in parentheses

A potentially major confounder of the estimated effect of co-author connections is the

research specialization of graduates. To address this concern, column 5 demonstrates that

the measured effect of network connections on matching is not driven by the alignment
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of the PhD graduate’s specialization in research topics with the research specialization

at potential hiring universities. We include controls for the cosine similarity between the

topics of the graduate’s dissertation and research output of potential hiring universities.

While the similarity measures predict which university a graduate matches with, they

have limited impact on the estimated effect of network connections. The estimated

coefficient for advisor connections decreases slightly to 0.684, and for PhD graduate

connections to 1.07. Appendix B.2.6 presents the estimated coefficients on the similarity

measures and summary statistics. The estimated coefficients, rescaled by one standard

deviation of the similarity measures, are positive and of the same order of magnitude as

the coefficients on connections. Thus, there is systematic matching on topic similarity,

but controlling for it has limited impact on the estimated coefficients on connections.

Advisor connections play a significant role across all fields, as shown in Appendix B.2.

Further, there is substantial variation in the point estimates across fields, which is

unrelated to the average number of connections.

To validate the robustness of our findings we perform various checks. First, we assign

PhD graduates a randomly chosen advisor from their PhD class. The placebo advisor’s

connections do not predict university placement, consistent with PhD advisors having a

close relationship with their own students, but not other students in the same PhD class.

Second, Appendix B.2.4 shows that our results are robust to changes in the level of detail

of measured research topics. Third, Appendix B.2.3 demonstrates that the estimated

effect of advisor connections diminishes with time since the last collaboration, consistent

with connections weakening as temporal distance increases. Lastly, we drop the fixed

effect at the level of PhD-class×hiring university and replace it with a fixed effect just

for the hiring university in Appendix B.2.7. We do this to include most dyads in the

matching regression. The results show that controlling for the fixed effect at the level

of PhD-class×hiring university compared to just the hiring university has no impact on

the point estimate of an advisor connection. However, in the larger sample, the point

estimate for γ is 1.1 while it is 0.66 in the smaller sample. We report the main estimates

with the more restrictive fixed effects, and smaller sample, as a conservative estimate for
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the role of advisor connections in the placement of PhD graduates.

In Panel B of table 2, we show the estimated time trend in the advisor connection’s

effect on matching PhD graduates to their first university. The estimated connection

effect is stable over time. In column (2), we add controls for differences in the effect

of connections by field, and in column (3), we further allow the effect of connections to

vary with the number of connections. The coefficient on the time trend in column (3) is

modestly positive (0.004, s.e. 0.003) for advisor connections and modestly negative for

PhD connections (-0.005, s.e. 0.006). Even when scaled to the difference between the

first and last year, i.e., multiplying the estimated coefficients by 25, the point estimate

implies a modest difference of 0.1 for advisor connections and -0.125 for PhD connections.

In summary, our findings so far indicate that network connections—both through the

advisor’s co-authors and the PhD graduate’s own co-authors—significantly increase the

likelihood of a graduate being placed at a university. This estimated effect of a connection

to a university is stable over time despite a large increase in the number of connected

universities. Now, we quantify to what extent the advisor and PhD connections increase

the probability of being placed at any of the connected universities.
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Figure 2: Estimated effect of co-author connections on placement of PhD graduates

Notes: We plot P̄j∈JA=1 − P̂ 0
j∈JA=1

which is the share of connected hires minus the predicted share of
connected hires in the absence of connections. See Appendix C.3 for the derivation. The values for
P̄j∈JA=1 are taken from Figure 1a and P̂ 0

j∈JA=1
= e−γ̂ P̄j∈JA=1

e−γ̂ P̄j∈JA=1 +(1−P̄j∈JA=1 ) is evaluated with the point
estimates for γ shown in Table 10.
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To assess the extent to which the share of network-based hiring in Figure 1a is

systematic we subtract the share of hires at a connected university that would have

been expected without a connection. Specifically, we use the estimated multinomial logit

model to subtract the predicted share of hires at connected universities that would have

occurred without a connection.

The predicted probability to match with a connected affiliation4 in absence of con-

nections is P̂ 0
i,j∈JA=1

= e−γ̂Pi,j∈JA=1
e−γ̂Pi,j∈JA=1 +(1−Pi,j∈JA=1 ) . See Appendix C.3 for the derivation.

We evaluate the counterfactual P̂ 0
i,j∈JA=1

at the sample average of the share of hires

P̄j∈JA=1 and at the estimated coefficients γ̂ shown in Table 10. We plot the systematic,

predicted share of connected hires P̄j∈JA=1 −P̂ 0
j∈JA=1

in Figure 2. The yellow bars show the

systematic role of PhD advisors’ collaboration networks in placing PhD graduates, which

has more than doubled from 1990 to 2014. The estimated increase in the probability of

being placed at a university connected by an advisor’s co-author reached over 10% in

2014. Most of the PhD’s own co-author connections overlap with the advisors; their joint

estimated role is shown in blue. PhD’s connections without overlap with the advisor are

shown in grey and are quantitatively almost irrelevant.

4.2 Post-PhD outcomes of network hires

We now study whether graduates placed through their advisor’s co-author network have

different career outcomes after graduation compared to graduates not placed through

the advisor’s network. We focus on outcomes measuring research productivity, such

as citations and the number of papers published in the first 7 years after graduation.

Furthermore, we complement these results with additional outcomes on (i) collaboration

patterns, measured by the number of new co-authors at the first post-PhD affiliation, (ii)

stability of the match, measured by an indicator for whether a graduate is still affiliated

with the same university 6 years after their PhD, (iii) whether graduates produce any

output more than 6 years after the PhD and (iv) the productivity of the hiring university

measured by citations. We focus on the results regarding advisor connections but discuss
4The set of connected universities is JA=1 and the probability to match with one of the universities

j ∈ JA=1 is denoted Pi,j∈JA=1 .
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the difference between the estimates for PhD connections at the end of this section.

The results are shown in Table 3, separately for the different comparisons: Panel A

shows the results from the point of view of the graduating class, Panel B from the point

of view of the hiring university, and Panel C includes fixed effects for both. All results

are from Poisson regressions, and so the coefficients measure differences in log points.

Comparing within the PhD class Starting with panel A, we find that graduates

placed through advisor connections are more productive than their classmates not placed

through connections. Column 1 shows that this gap is 23.8 log points for the number of

citations.5 This gap can reflect ability, access to productivity-enhancing employers, or a

direct effect of the connection as such.

Columns 2 and 3 show that publicly observable predictors of productivity can partly

explain this gap. Controlling for the expected citations of the graduate’s work before

graduation lowers the point estimate to 0.172; further controlling for the advisor’s ci-

tations before graduation lowers the estimate to 0.121 (standard error 0.021). Thus,

graduates from the same PhD class with an advisor connection to their first post-PhD

university outperform, above and beyond, what is predictable based on their own and

their advisor’s pre-graduation research output. In the remaining columns of the table,

we include these additional predictors as controls in the regressions.

Column 4 shows that a higher number of papers partly drives higher citations. The

point estimate is 0.061 (standard error 0.01), indicating that about half the higher number

of citations post-PhD is due to more papers. Thus, graduates placed through connections

are more productive in terms of the quantity and quality of research.

Column 5 shows that graduates who are placed through connections collaborate more

with their new colleagues. Despite increased collaboration, connected hires are more than

14% less likely to be affiliated with their first university 6 years after the PhD (column

6). This result is not driven by dropping out from research: Column 7 shows that the

probability of producing any output 6 years after the PhD or later is the same. PhD

graduates are likely to be in a postdoc position (Fiegener, 2010); thus, leaving the first
5The point estimate translates into exp(0.238) − 1 ≈ 27% higher citations.
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affiliation can be a positive sign as it may reflect a step up the career ladder to a faculty

position.

Finally, in column 8, we show that graduates placed through connections are matched

to substantially more productive universities, as measured by the citations of the univer-

sity in a graduate’s dissertation field.

To summarize, from the perspective of the PhD class, graduates placed through the

network have substantially different careers compared to their peers. They outperform

post-PhD in terms of both quantity and quality of research, are placed in more productive

universities, collaborate more with their new colleagues, and are more likely to switch

affiliations 6 years after the PhD. This holds even after controlling for pre-determined,

publicly observable predictors of productivity. That is, among PhD graduates from a

similar environment, there is substantial selection into network hiring, reflecting the

ability of the graduate, the quality of first placement, and the quality of the match

to their first post-PhD university.

To further highlight the selection into network hiring, even among graduates from

similar environments, we now show whether the estimates reflect selection across advisors.

We repeat the analysis of Table 3 Panel A but include advisor fixed effects. Figure 3

shows in grey the baseline estimate and in yellow and blue specifications with the advisor

fixed effect. The relative productivity of connected and not connected graduates is similar

when compared within a PhD class as it is within an advisor. Even for graduates with the

same advisor, there is a large gap in productivity post-PhD, which highlights substantial

selection into network hiring even conditional on a very similar PhD environment.

Comparing within the hiring university To provide evidence on whether network

hiring outperforms as a hiring channel, we now compare graduates within a hiring uni-

versity6. In Table 3, Panel B, we present results from the hiring university’s perspective.

Column 1 indicates that connected hires are approximately 11% more productive than

other hires at the same university, suggesting that connected hires are positively selected

based on productivity even when placed at the same university post-PhD.
6We interact the fixed effect for the hiring university with field and 5-year graduation window.
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Figure 3: Poisson regression of post-PhD outcomes on advisor connection with advisor
fixed effects

In columns 2 and 3, we progressively add the productivity predictors as in panel

A, showing that publicly observable factors can explain the productivity premium of

network hires. Including both the advisor’s and the student’s pre-graduation productivity

(in column 3) makes connected and non-connected hires indistinguishable—the point

estimate for γ drops to −0.013 (standard error 0.021). This means that connected hires

are positively selected in terms of publicly observable productivity predictors at the time

of PhD graduation but not in terms of private information revealed by the connection.

The remaining columns in panel B keep the same controls as column 3. Compared

to other hires at the same university, they show that connected hires publish a similar

number of papers and collaborate with a similar number of new co-authors but are more

likely to leave the university despite continuing research at a similar rate.

The results about the role of publicly observable predictors of productivity in panel

B are noteworthy for three reasons. First, they contrast with the findings from panel
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A from the graduating class’ point of view: Connected hires from the same PhD class

substantially outperform their non-connected peers, but once the place of work is taken

into account, this gap drops to 0. This implies that either the place of work has a

direct effect on the productivity of graduates or that the hiring mechanism of these

more productive places can uncover information about graduates that is unobserved to

the analyst, also in the absence of a network connection. Second, the gap in column 1

resembles the findings in Burks et al. (2015) for trucking and high-tech. But, while they

found that connected hires were similar along measures of general human capital (Burks

et al., 2015, Table IV), we find that the gap can be explained by predictors of productivity

specific to the job. Third, the results are not in line with theories that highlight the use of

networks to reveal information about match quality: Such theories imply that connected

hires should be more productive than non-connected hires even after controlling for any

publicly observable predictors of productivity. We find no evidence for such effects.

In Appendix B.3.4 we present the within hiring university estimates for citations,

corresponding to columns (1) and (3) of Panel B, separately by field.

Comparing within class and within hiring university Panel C in Table 3 shows

results where we control for fixed effects for the hiring university and the PhD class. The

results are similar to those in panel B: Connected hires outperform other hires at the

same university, but this performance gap can be predicted by public information at the

time of hiring. Point estimates are very similar when adding the fixed effect for the PhD

class in addition to the hiring university. This implies that conditional on the selection

done by the hiring university, there is limited additional information in which PhD class

a student is from when comparing connected to not-connected hires.

PhD graduate’s connections PhD graduates’ own co-author connections to other

universities also exhibit substantial positive selection in terms of post-PhD citations across

Panels A, B, and C of Table 3. After controlling for productivity predictors in column (3),

the gap in citations is small and positive but statistically insignificant in all panels. In

contrast, the number of papers shows a consistently positive and significant gap, ranging
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from 4.3 to 5.3 log points, even after applying controls. The differences between hires

through PhD connections and advisor connections are further reflected in other outcomes,

all of which display substantially more negative point estimates for PhD connections.

PhD-connected hires have fewer new co-authors at the hiring university, partially due

to pre-existing co-author relationships with researchers at the same university. They are

also significantly less likely to remain at the hiring university. Additionally, they are

more likely to cease publishing entirely. While the point estimates for PhD and advisor

connections differ, our initial results on matching highlight that advisor connections play

a much larger quantitative role.

Assessing Changes over time In the Appendix, in Table 14, we report the results

from estimating equation (5), with the fixed effects for both class and field. We are

unable to detect substantial changes in the difference in ex-post hiring outcomes between

graduates hired through the network and graduates not hired through the network.

Thus, despite the increasing importance of the collaboration network for PhD graduates’

hiring, the selection into being hired through the network has remained stable during our

sampling period.
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Table 3: Poisson Regression: Post-PhD outcomes of connected vs. not connected hires

Panel A: Comparison of post-PhD outcomes with Class Fixed Effect

Dependent Variables: N Cites PhD graduate N papers Co-authors Same Affil Any output N Cites of
First Affil PhD+6yrs PhD+6yrs First Affil

Model: (1) (2) (3) (4) (5) (6) (7) (8)

Variables
Advisor connection 0.238 0.172 0.121 0.061 0.173 -0.142 -0.007 0.515

(0.021) (0.019) (0.019) (0.010) (0.019) (0.013) (0.004) (0.081)
PhD connection 0.232 0.027 0.045 0.053 -0.089 -0.505 -0.030 -0.041

(0.030) (0.030) (0.029) (0.015) (0.032) (0.032) (0.006) (0.035)

Fixed-effects
PhD Class Yes Yes Yes Yes Yes Yes Yes Yes
Subfield (MAG lvl 1) Yes Yes Yes Yes Yes Yes Yes Yes
Pre-Graduation Productivity×Field Yes Yes Yes Yes Yes Yes Yes
Advisor Citation Decile×Field Yes Yes Yes Yes Yes Yes

Fit statistics
Pseudo R2 0.43 0.51 0.52 0.30 0.35 0.04 0.01 0.75
Observations 82,141 82,141 82,141 82,279 77,484 79,895 81,771 82,092

Panel B: Comparison of post-PhD outcomes with Destination Fixed Effect

Dependent Variables: N Cites PhD graduate N papers Co-authors Same Affil Any output
First Affil PhD+6yrs PhD+6yrs

Model: (1) (2) (3) (4) (5) (6) (7)

Variables
Advisor connection 0.117 0.059 -0.013 0.018 0.018 -0.067 -0.009

(0.022) (0.020) (0.021) (0.009) (0.012) (0.012) (0.005)
PhD connection 0.208 0.014 0.039 0.048 -0.067 -0.465 -0.031

(0.026) (0.025) (0.025) (0.013) (0.029) (0.037) (0.007)

Fixed-effects
Hiring University Id×Field × 5 year window Yes Yes Yes Yes Yes Yes Yes
Subfield (MAG lvl 1) Yes Yes Yes Yes Yes Yes Yes
Pre-Graduation Productivity×Field Yes Yes Yes Yes Yes Yes
Advisor Citation Decile×Field Yes Yes Yes Yes Yes

Fit statistics
Pseudo R2 0.51 0.57 0.58 0.37 0.38 0.06 0.01
Observations 81,660 81,660 81,660 82,279 67,755 75,833 80,463

Panel C: Comparison of post-PhD outcomes with Class and Destination Fixed Effect

Dependent Variables: N Cites PhD graduate N papers Co-authors Same Affil Any output
First Affil PhD+6yrs PhD+6yrs

Model: (1) (2) (3) (4) (5) (6) (7)

Variables
Advisor connection 0.080 0.043 -0.004 0.024 0.015 -0.068 -0.008

(0.023) (0.022) (0.021) (0.010) (0.016) (0.013) (0.005)
PhD connection 0.218 0.026 0.039 0.049 -0.068 -0.483 -0.032

(0.029) (0.028) (0.027) (0.016) (0.035) (0.038) (0.007)

Fixed-effects
PhD Class Yes Yes Yes Yes Yes Yes Yes
Hiring University Id×Field × 5 year window Yes Yes Yes Yes Yes Yes Yes
Subfield (MAG lvl 1) Yes Yes Yes Yes Yes Yes Yes
Pre-Graduation Productivity×Field Yes Yes Yes Yes Yes Yes
Advisor Citation Decile×Field Yes Yes Yes Yes Yes

Fit statistics
Pseudo R2 0.63 0.68 0.68 0.43 0.45 0.09 0.02
Observations 81,614 81,614 81,614 82,279 66,551 74,276 80,151

Notes: The unit of observation is a PhD graduate. See equation (4) for the Poisson regression specification. Observations with zero outcomes that are
perfectly predicted by fixed effects are dropped. Clustered (PhD university- Field - 5 year window + Hiring university) standard-errors in parentheses.
N Cites PhD graduate measures citations received on articles published in the first 7 years post PhD graduation. N papers is the number of articles
published in the same period. Co-authors First affil measures the number of new co-authors at the first post-PhD affiliation. Same Affil PhD+6yrs
and Any Output PhD+6yrs indicate whether the PhD graduate, 6 years after the PhD graduation or later, is still affiliated with their first post-PhD
affiliation and whether they publish any papers at that point.



Lastly, we provide additional results regarding the robustness of our main results in

the Appendix. Our analysis of post-PhD outcomes and the interpretation of the results

depends on whether factors that are known to market participants, determine both post-

PhD outcomes and whether a graduate ends up a connected hire. We consider two

candidates for such factors: (1) the size of the network, measured by the number of

connected affiliation and (2) the topical alignment of the PhD graduate’s dissertation

with the hiring university. See Appendix B.3.6 and B.3.3 for the results. In both cases

we find very similar results to those reported in Table 3.

5 Conclusion

We analyze the role of PhD advisors’ collaboration networks for matching PhD graduates

to universities. To do so, we build a novel database containing information about PhD

graduates that allows us to track them and their advisors throughout their careers.

We find that co-author connections of advisors strongly predict at which university

a PhD graduate finds their first job—having a connection doubles the probability of

matching with a given university. Our estimates account for unobserved heterogeneity at

the level of PhD class × hiring university pair and the similarity in research topics between

the graduate’s dissertation and her potential new colleagues at the hiring university.

Overall, the importance of advisors’ collaboration networks for matching PhD graduates

to universities doubled between 1990 and 2014 due to the increasing size of the network.

We then show the gap between connected and non-connected hires on a range of post-

PhD outcomes. When comparing graduates from the same PhD class, connected hires are

more productive post-PhD. They receive over 12% more citations, even after controlling

for public information about the graduate’s and their advisor’s research output during the

PhD. Connected hires are still more productive when comparing network hires to their

peers at the same hiring university. However, in this case, the productivity premium of

network hires can be predicted by public information at the time of hiring.

Our results show that favoritism does not dominate network hiring, as network hires
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are positively selected based on productivity. However, the lack of a productivity premium

beyond public information suggests that the screening benefits of network hiring are

limited in the PhD graduate market.
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A Data appendix

The broad steps in our data pipeline are shown in Figure 4. The following subsections

explain the details.

MAG

Preprocessing

PQDT

Preprocessing

Constructed variables MAG Constructed variables PQ

Analysis

Record Linkage

Postprocessing

Linked records

Figure 4: The end-to-end data pipeline.

The figure shows a schema of the data pipeline. Oval nodes are data handling steps; rectangular nodes
are data (single or multiple relational tables). See text for details.

34



A.1 Data sources

A.1.1 Microsoft Academic Graph (MAG)

The data are collected from the internet by Microsoft’s search engine Bing and from RSS

Feeds of publishers. Six entities are extracted from the data: Author, Institution,7 Paper,

Field of Study, Venue (e.g., “American Economic Review”), and Event (e.g., a specific

issue of the AER). For some entities (Author, Affiliation), the database reports both

the original string and a disambiguated string together with an entity ID generated by

MAG’s algorithms, described in more detail by Sinha et al. (2015). The Affiliation entity

is extracted from the metadata of published papers, and an author may have multiple

affiliations for the same paper.

They use additional proprietary in-house and online data to create the Field of Study

entity. There are five levels of Field of Study, and the labels represent the semantics of a

paper. At the highest level, 0, the labels correspond to fields of study such as chemistry,

biology, and mathematics. A paper is assigned several such Fields of Study from any

level.

Compared to other databases often used in bibliometric analysis, such as Scopus or

Web of Science, several studies find MAG to be comparable in coverage. Visser, van

Eck and Waltman (2021) benchmark several databases (MAG, Crossref, Dimensions,

and a restricted version of Web of Science) against Scopus for the years 2008 to 2017.

They report that MAG has the highest coverage (81 percent). They also report that

MAG covers many documents that are not in Scopus, and in a random sample of

these, many of them are of a scientific nature. Martín-Martín et al. (2020) reports that

Microsoft Academic has the second-highest coverage of citations among a set of services,

including Google Scholar, Scopus, and Web of Science. Microsoft Academic finds 60%

of all citations, with good coverage for many fields except some issues in Physics and

some Humanities categories. Hug, Ochsner and Brändle (2017) find that a citation

analysis with MAG gives the same results as with Scopus. Although they find some
7Institutions can be universities, firms, or international organizations. Since we focus on universities,

we will refer to this entity as “university”.
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errors in metadata on papers, such as missing authors and wrong year of publication,

they believe that MAG has the potential for “full-fledged bibliometric analysis”. Hug

and Brändle (2017) benchmark the quality and coverage of MAG with Scopus and Web

of Science (WoS) for the research output of a specific university. They find high rank-

rank correlations between the databases in citation counts and find that MAG has good

coverage of venue entities. Harzing and Alakangas (2017) compare citation counts for a

set of academics in different disciplines (Engineering, Social Sciences, Humanities, Life

Sciences, Sciences) and find that MAG, behind Google Scholar, performs at least as good

or better than WoS and Scopus across disciplines.

A.1.2 Proquest Dissertation & Theses (PQDT)

PQDT is a repository of PhD theses provided by Clarivate Analytics (Proquest, 2023).

To our knowledge, it is the most complete repository of PhD theses in the United States.

We use the metadata of this database: the name, graduating university, reported advisors

of the student, the title, and the keywords of the dissertation.

A.2 Preprocessing

MAG Based on the MAG database, we build several intermediate tables for each

author. We extract the Fields of Study they publish in and the start and end year of their

publishing career. We extract the unique affiliation-year combinations of their published

papers. From the first ten papers published within the first five years of an author’s

publication career, we also extract the unique keywords and the year-title combinations

of the publications. The keywords are the MAG Fields of Study labels at level 1.

Because an author can publish papers with different affiliations in the same year, we

use two types of universities: main and all. main refers to the one affiliation in a year at

which the author publishes most of their papers. all refers to the list of all affiliations.

MAG is built from the raw data of each paper and thus requires author disambigua-

tion. The disambiguation in MAG is conservative because high precision is traded off for

lower recall. For instance, this creates some entities that are duplicates of other author
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entities. These duplicates, however, tend to be associated with only one or a few papers

and have shorter publication careers than the main entity for a researcher. For example,

MAG will have multiple author entities named Jordi Gali. Still, one of them is clearly the

main entity with basically all of his publications, and the duplicate author entities tend

to have only one "publication" that does not provide sufficient information for author

disambiguation, including online publications like short reports or blog posts.

For this reason, we follow Huang et al. (2020) and restrict the author sample to entities

that publish at least two articles during their whole career and, on average, at most 20

papers per year. This is our main author sample used in the remaining analysis.

ProQuest We use the PQDT database (Proquest, 2023). Starting with the individual

dissertation files, we extract tables for advisors, authors, tagged fields of study,8 and

predicted fields of study. The fields of study are predicted from the abstract of each thesis

with the language model from MAG. We keep the ten most likely predicted fields as long

as their score is above 0.4 (a heuristic threshold below which we found the predictions to

be noisy). We export these tables from the Clarivate server and process them further.

We use the dissertation identifier from PQDT as an identifier for graduates. As

advisors are not uniquely identified, we create identifiers called relationship_id. They

uniquely identify the graduate and the advisor’s position in the metadata. We uniquely

identify universities based on their name. We correspond the fields reported in ProQuest

to the MAG fields (lvl 0) utilizing the classification by Organisation for Economic Co-

operation and Development (2007).

Crosswalking university entities In several steps of our analysis, it is important

to distinguish universities from each other, but reported names differ between MAG

and PQDT. We create a crosswalk of universities from the set of US universities on

the Carnegie classification (American Council on Education, 2021): We correspond the

university identifiers from MAG and from PQDT to the Carnegie list. We do so with

the name and, where possible, the zip code and city of the university; for this task, we
8These tags are readily available but are different from the labels used in MAG.
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use the table of zip codes from Missouri Census Data Center (2020). We link all R1

universities, most of R2 and R3 universities, and some additional institutions. Whenever

necessary, we use the university name from the Carnegie classification, which we refer to

as the crosswalked university name.

A.3 Record Linkage

Here, we present the approach to linking records across PQDT and MAG. We use the

open-source library dedupe (Gregg and Eder, 2022) to train a record-linking algorithm.

The record-linking algorithm is trained by labeling proposed links across two datasets.

However, two random records across datasets are almost never a link. To avoid this

problem, the algorithm blocks records into groups based on the similarity of the features

used for linking. The user is then asked to label proposed links chosen from pairs of

records blocked together and some randomly chosen pairs. The proposed pairs the user

is supposed to label are chosen to be the ones that the algorithm is least certain about.

This procedure allows the fuzzy linking of very large databases with limited cost in terms

of labeling and computation.

We separately link PhD graduates and PhD advisors from PQDT to MAG. Further,

we separately link within each field.

Using the following features, we search for one-to-one links between graduates in

PQDT and authors in MAG:

• First name, last name and middle name.

• Dissertation keywords and the keywords in the publications at the start of the

publishing career in MAG. The keywords are the fields of study entity from the

MAG semantic language model. We use the fields at level 1 and aggregate fields

at levels 2 to 5 to their most likely parent at level 1. We only consider fields where

the algorithm is confident enough about the field (a score of at least 0.4).

• The year of graduation in PQDT and the year of first publication in MAG

• Thesis title in PQDT and the paper titles in MAG.
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Because an author in MAG can be an advisor for multiple theses, we search for

many-to-one links between advisors in PQDT and authors in MAG. We use the following

features:

• First name, last name and middle name.

• The student’s graduating year in PQDT and the start and end year of the advisor’s

publishing career.

• Dissertation university and MAG affiliation, both crosswalked to the Carnegie List,

as described above (American Council on Education, 2021).

A.4 Training

Each of the two authors of this paper created one training sample per field of study. We

provided 40 to 60 labeled pairs and followed the following protocol. To label a proposed

link as a true link, the following needs to hold

1. For students

(a) Similar names.

(b) Overlap in paper titles or overlap in keywords.

(c) Graduating year and year of first publication not more than 10 years apart.

2. For advisors

(a) Similar names.

(b) The student does not graduate before the year of the first publication of the

advisor.

(c) The advisor is at a university with a similar name as the student in a window

around the student’s graduation.9 Proposed links that are more than 10 years

apart are labelled as “no”, even if the previous conditions are true.
9This often resulted in requiring exactly matching university names, although in some special cases

(such as the University of California system) it did not.
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We then label records for each of the research fields. Within the above boundaries,

each author judges the similarity of records to actively label proposed links.

A.5 Postprocessing of the predicted links

In this step, we combine the predicted links from the two models into a single prediction.

The step is based on a comparison as illustrated in table 4 for graduates and table 5. For

each field, we compare the predicted links of the two models. Starting from the sample

of graduates/advisors in ProQuest, we classify the predicted links into four groups: those

where the predicted MAG entity is the same (column “Same entity”), where only one of

the models found a link (“Only by 1”, “Only by 2”), and where both models found a link

but to different entities (“Different entity”). The table reports these fractions for each

field of study and a weighted average across all fields. We will return to these numbers
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in section A.6.

Table 4: Linking the graduates

Fraction of links found
Field Same entity Only by 1 Only by 2 Different entity Number of links

Art 0.48 0.52 0.00 0.00 1717
Biology 0.67 0.29 0.03 0.01 51420
Business 0.67 0.15 0.13 0.05 12147
Chemistry 0.86 0.12 0.01 0.01 24490
Computer Science 0.88 0.04 0.07 0.02 19933

Economics 0.76 0.16 0.07 0.01 7680
Engineering 0.59 0.24 0.14 0.04 34597
Environmental Science 0.79 0.03 0.17 0.01 5091
Geography 0.66 0.29 0.04 0.01 4097
Geology 0.68 0.26 0.05 0.01 5260

History 0.88 0.07 0.05 0.01 5574
Materials Science 0.46 0.26 0.22 0.05 9771
Mathematics 0.63 0.32 0.04 0.01 12239
Medicine 0.44 0.22 0.31 0.03 8645
Philosophy 0.85 0.06 0.08 0.01 2721

Physics 0.62 0.04 0.31 0.03 7459
Political Science 0.85 0.08 0.06 0.01 7107
Psychology 0.89 0.06 0.04 0.01 33327
Sociology 0.71 0.05 0.23 0.01 4742

Total 0.69 0.19 0.10 0.02 258017

Note: The table summarizes the links found from ProQuest graduates to MAG authors.

Graduates are defined as the authors of the dissertations in ProQuest. First, the columns headed

by “Fraction of links found” compare the identified links across two different labelers as described

in the text. The columns show the fraction of links found for two training sets constructed by two

different labelers. “Same entity” are graduates for which the models trained on different training

sets find the same MAG identifier. “Only by 1” and “Only by 2” are graduates for which only

one of the two separately trained models found a link to MAG. “Different entity” are graduates

for which both models find links to MAG but to different identifiers. Second, the last column

reports the total number of links found for each field after postprocessing (see text for details).

Third, the last row reports the total across fields. The fractions are weighted by the number of

graduates in the respective fields in ProQuest 1990–2014.
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Table 5: Linking the advisors

Fraction of links found
Field Same entity Only by 1 Only by 2 Different entity Number of links

Art 0.88 0.00 0.11 0.01 10628
Biology 0.78 0.00 0.22 0.00 101852
Business 0.69 0.01 0.30 0.00 30963
Chemistry 0.93 0.00 0.02 0.05 48670
Computer Science 0.89 0.08 0.02 0.01 39618

Economics 0.96 0.00 0.02 0.02 27266
Engineering 0.81 0.00 0.19 0.00 99106
Environmental Science 0.73 0.23 0.03 0.01 11055
Geography 0.62 0.32 0.02 0.03 12229
Geology 0.84 0.00 0.14 0.01 11478

History 0.85 0.01 0.12 0.02 30228
Materials Science 0.74 0.01 0.13 0.12 23998
Mathematics 0.78 0.15 0.01 0.06 32938
Medicine 0.94 0.00 0.02 0.04 19264
Philosophy 0.93 0.00 0.06 0.00 12153

Physics 0.51 0.15 0.03 0.31 19825
Political Science 0.87 0.00 0.08 0.04 24309
Psychology 0.91 0.00 0.08 0.00 94144
Sociology 0.46 0.01 0.51 0.02 20914

Total 0.83 0.02 0.12 0.03 670638

Note: The table summarizes the links found from ProQuest advisors to MAG authors. An

advisor is one relationship id as described in the text. First, the columns headed by “Fraction

of links found” compare the identified links across two different labelers as described in the text.

The columns show the fraction of links found for two training sets constructed by two different

labelers. “Same entity” are advisors for which the models trained on the different training sets

find the same MAG identifier. “Only by 1” and “Only by 2” are advisors for which only one of

the two separately trained models found a link to MAG. “Different entity” are advisors for which

both models find links to MAG but to different identifiers. Second, the last column reports the

total number of links found for each field after postprocessing (see text for details). Third, the

last row reports the total across fields. The fractions are weighted by the number of graduates

in the respective fields in ProQuest 1990–2014.
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We combine the links as follows. First, using the comparison previously explained, we

only keep predicted links where the predictions from the two models agree. This means

that, for both graduate and advisor entities, we accept links of three kinds:

1. The two models link the same MAG entity identifier to the ProQuest entity.

2. Only one of the models predicts a link, but the entity name in MAG is very similar

to the entity name in ProQuest—a Jaro-Winkler similarity of 0.9 or more.

3. The two models assign a different MAG entity to the same ProQuest entity. Here,

we only keep cases where two conditions hold: First, the names of the two entities

in MAG are almost identical (a Jaro-Winkler similarity of 0.99 or more). Second,

the entity of one of the predicted links publishes more than five times as many

papers over the whole career as the entity of the other predicted link. This case

covers duplicated entities in MAG, where a few papers are not merged to the main

entity of an author.

Second, we deal with duplicates that arise from linking fields separately. For grad-

uates, we require that both the MAG and the ProQuest entity are uniquely linked; in

other words, if a graduate in ProQuest is linked to different MAG entities in the models

for chemistry and biology, we drop them. This can happen if the dissertation field is not

uniquely assigned to chemistry or biology. For advisors, we require that the ProQuest

entity be uniquely linked to MAG, but not vice versa, since advisors can supervise multiple

theses.

The last row in tables 4 and 5 report the number of links that result at the end of this

postprocessing step. In total, we find around 258’000 one-to-one links for graduates and

670’000 many-to-one links (from many dissertations to one MAG entity) for advisors.

A.6 Empirical performance of the linking algorithm

We discuss the performance of the record linkage in terms of precision and recall and the

role of human error in training the linking algorithm.
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Precision and recall In prediction tasks where a representative sample of correctly

labeled pairs exists, one can check the performance of the prediction by comparing

predicted to true labels. Because of active learning, the labeled records are not randomly

selected and, therefore, unsuitable for calculating recall and precision. Nevertheless, we

suggest a lower bound for the precision in linking graduates and an approximation to

recall for advisors.

First, we provide a check on the precision of our links for graduates in chemistry.

Precision is defined as the number of true links divided by the total number of links

made. For chemistry, we provide a test based on correctly linked graduates: First, because

most graduates already publish during their dissertation (Gaulé and Piacentini, 2013),

we can calculate the fraction of our linked chemistry graduates that satisfy this condition,

conservatively discarding any other links as false positives. Second, because we do not

link on the name of the PhD university, we can compare the name of the alma mater

to the affiliation name of the linked author entity in MAG before graduation. We find

that 18% of linked graduates do not publish during their dissertation. Further, 4% of

those that publish do not publish at their alma mater. Therefore, at least a fraction

of (1 − 0.18) × (1 − 0.04) = 0.78 linked records was plausibly linked correctly. This

performance is in the upper tercile of the methods discussed in Bailey et al. (2020, Table

1) for historical US census data.

Second, because advisors tend to be established researchers and likely publish reg-

ularly, we should find a high fraction of advisors in the MAG data. We find about 75

percent or more advisors in the MAG data in most fields and years.10 This indicates that

our linking strategy has a high recall for advisors, i.e., a high share of links found out

all links that could be found. This also provides reassuring evidence that the affiliation

information in MAG is accurate since it is required to identify co-author connections

across universities.
10The exceptions are philosophy, where we find between 50 and 75 percent of advisors in each year,

and business, where the fraction of advisors linked declines from 0.75 to 0.6 over the sample period.
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Human error As the algorithm is trained through active labeling by humans, errors

in labeling may propagate to a biased linked sample. By ensuring consistency between

two individual labelers, the postprocessing of links reduces such concerns. Moreover, the

linking statistics in Tables 4 and 5 show that the models make very similar predictions.11

First, the models agree for 69 percent of linked graduates and 83 percent of linked

advisors. In most fields, the agreement is at least 60 percent. Second, the predicted MAG

entity rarely differs. Across fields, this number is at most five percent for graduates. It is

similar for advisors except for Materials Science and Physics. Third, the columns “Only

1” and “Only 2” also show that one of the two models is typically more conservative than

the other. However, the postprocessing only keeps such links if the names of the linked

entities are very similar.

A.7 Constructing the analysis sample

We look at graduates between 1990 and 2014 whom we can link to MAG and for whom

we can link at least one advisor to MAG.

In the main text in Section 2, we describe the construction of the main variables used

in the analysis. Here, we provide additional detail ommited from the main text.

The share of PhD graduates our sample represents is shown in Table 6. ProQuest

records approximately 1.1 million dissertations from US universities between 1990 and

2014. Matching these dissertations to universities and colleges listed in the Carnegie

Classification leaves us with 1.04 million theses. We link approximately 24% of these

observations to MAG, where we restrict the MAG AuthorIds to those who have at least

once a recorded affiliation in the US. We restrict our sample further to graduates whose

advisors are also linked in MAG. Graduates must publish at least one paper within the

time frame of one to seven years after their graduation.

Further, they need to have at least one recorded affiliation on the post-PhD publica-

tions. Lastly, that recorded affiliation needs to be on the Carnegie list and different from
11These similarities do not stem from overlap in the training sets: We verified in one field (graduates

chemistry) that the training sets of the two labelers do not overlap (for one labeler, two out of 50 pairs
are also in the training set of the other labeler).
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the PhD awarding university. These restrictions leave us with 7.4% of the initial sample

and 31.2% of the linked graduates.

Table 6: Sample selection

Sample Cut N Share Share of linked

graduates

Proquest Dissertations, US location, 1990-2014 1116087 100.0

University in Carnegie list 1044436 93.6

Linked to MAG AuthorId (with US affiliation) 263602 23.6 100.0

Advisor Linked to MAG AuthorId 212303 19.0 80.5

At least 1 paper post-PhD 194315 17.4 73.7

Post-PhD affiliation recorded 130323 11.7 49.4

Post-PhD affiliation in Carnegie List 96176 8.6 36.5

Post-PhD affiliation != PhD affiliation 82279 7.4 31.2

The sample is not a random representation of all PhD graduates but focuses on those

in US academia with a publication record. This limits generalizability, especially to

graduates entering industry, government, or non-academic sectors. While not fully repre-

sentative, the sample is well-suited for analyzing academic trajectories and productivity.

A.7.1 Field composition of sample

In Figure 5 we show the field composition of our analysis sample of PhD graduates.

The sample is not representative of the field distribution of all PhD graduates. Thus,

to complement the analysis in the paper, we also show the main results split by field in

Appendix B.2 and B.3.4.

A.7.2 Topical Fit

An innovation in our paper is a proxy for the topical fit between PhD graduates and

universities, which we use as controls in our regressions. We compute these metrics from
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Figure 5: Field composition of PhD graduates in analysis sample

dissertation abstracts using the following methodology.

Our starting point is MAG’s language model (Wang et al., 2020, section 2.5) that

assigns Fields of Study to scientific text. The MAG database contains assigned Fields of

Study for each paper, and their corresponding score. We apply MAG’s language model

to the dissertation abstract (or to the title if the abstract is missing), recording the ten

highest-scoring Fields of Study for each and the corresponding score, as long as the score

is above 0.4. This cutoff was chosen heuristically, as additional Fields of Study with low

scores appear to be unrelated to the content of the abstracts.

We use these data to compare the research topics of graduates’ dissertations and

hiring universities’ research output. As research topics, we use the Fields of Study of the

MAG classification up to level 2 and show robustness regarding this choice in Appendix

B.2.4.

For the documents in MAG, we use the same restriction on document types as

before; that is, we include papers classified as “Journal,” “Book,” “Book Chapter,” and

“Conference.” Microsoft has already assigned the topics for documents in MAG.

For hiring universities, we consider research output in the five years before the gradu-

ate’s dissertation. We consider the set of authors in MAG sharing the given affiliation and
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having publication careers in the same field (e.g., “economics”). We determine authors’

affiliations based on the universities at which they publish most of their papers each year.

For all department authors, we calculate the average score for each Field of Study across

all papers published in the five years before the graduate’s dissertation. We compute the

hiring university × Field’s overall topic vector as the sum of the authors’ topic vectors.

Finally, we compute two cosine similarities for each pair of graduate and hiring

university to proxy how well the graduate’s research concepts align with the hiring

university’s. The first similarity compares the graduate’s concept vector to the hiring

university × Field’s overall topic vector, capturing how well the graduate’s research fits

the general specialization. The second similarity is the maximum cosine similarity of the

similarities between the graduate’s topic vector and each individual author affiliated with

the hiring university publishing in the same field12. A high score in this metric indicates

that there is a researcher with very similar research interests to the PhD graduate in the

hiring department.

The calculation of the cosine similarity in detail:

• S⃗i is the topic vector where each entry n = 1, . . . , N is the sum of the scores of

topic n over the set of documents Pi by author i: Si,n = ∑
p∈Pi

sn,p. Normalizing

the topic vector does not affect the calculated similarity in the next steps.

• Similarity between two authors i, i′:

cos similarity(i, i′) =
∑

n(Si,n ∗ Si′,n)√∑
n S2

i,n

√∑
n S2

i′,n

• Max similarity between graduate i and department j. The set Ij of authors at

department j to be considered are those,

– who are affiliated with department j within the 5 years up to graduation of i,

– whose main field is the same as of graduate i.
12To limit computational burden, we restrict attention to the 200 authors publishing the most papers

in the given time period, affiliated with the hiring university and publishing in the same field. In practice,
this is rarely a restriction.
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– We restrict to documents in the last 5 years (up to graduation year of i).

• Max similarity between graduate i and department j is defined as

max cos similarity(i, j) = max
i′∈Ij

cos similarity(i, i′).

• Average similarity between graduate i and department j is the cosine similarity

between the topic vector for all researchers in Ij, defined as S̄j = ∑
i′∈Ij

S⃗i′ .

avg cos similarity(i, j) =
∑

n(Si,n ∗ S̄j,n)√∑
n S2

i,n

√∑
n S̄2

j,n

.

A.7.3 Quality of Affiliation Information

The average number of advisor connected affiliations per student increases from 5 to 15

over the sample period, as shown in Figure 1b. This rise, however, may partly reflect

improvements in the coverage of affiliation information in MAG. To address this, Figure

6. Specifically, it shows the proportion of authors with at least one document in MAG in

a given year who have available affiliation information. We plot the average of this share

for each dissertation year, separately for advisors and graduates.

The figure reveals that affiliation coverage improves over time, increasing by nearly

20%. However, the number of connected affiliations rises by 300%. Even if the entire

increase in affiliation coverage was attributed to measurement error, the observed growth

in connected affiliations is still an order of magnitude larger. Thus, at most, a small share

of the observed rise in the number of connected affiliations can be attributed to better

coverage of affiliation information.
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B Additional Results

B.1 Sample Selection

In this section, we provide additional evidence on the selection of observations that

end up in our main analysis. Our main analysis examines post-PhD outcomes for

graduates based on whether they join a connected affiliation. A potential concern is

that graduates might be systematically selected into the sample based on their network

characteristics. Specifically, graduates with certain network traits could be more likely

to become connected hires due to factors that also influence post-PhD outcomes. If true,

this would imply a correlation between being a connected hire and the unobserved error

term ui in the outcome equation (4).

While we cannot directly test this, we can investigate whether the likelihood of being

included in the analysis is related to a key determinant of becoming a connected hire:

the number of connected affiliations.

To do this, we estimate a logit model predicting inclusion in the analysis sample among

all graduates that we could link to MAG. The predictors include variables constructed

from research output up to the PhD graduation year, similar to those in our main post-

PhD analysis. However, instead of expected citations based on publication venues, we use

10-year forward citations13. All variables are discretized into deciles within Field×5-year

windows.

Table 7 shows the results. Columns 1 and 2 show the regression result regarding

sample inclusion. Column 1 includes only productivity-related predictors, the number of

papers and their citations of the graduate, and the citations of the advisor. Column 2 adds

the size of the collaboration network, measured by the number of connected affiliations.

The Pseudo R2 changes minimally between these two specifications, suggesting that

network size does not predict whether a graduate is included in our sample. This result

is reassuring, as it indicates that sample selection is not driven by exposure to networks

(conditional on PhD productivity).
13Here, we are not concerned that the information we use is not available in real-time for market

participants; we want to document whether there is systematic selection into the sample
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Next, we focus on the analysis sample to examine whether the number of connected

affiliations predicts joining a connected affiliation. Columns 3 and 4 in Table 7 present

these results, showing that network size is highly predictive of becoming a connected hire.

This finding echoes our results on matching discussed in Section 4.1.

In summary, network size is closely related to the probability of a graduate joining a

connected affiliation but is unrelated to whether they are included in our analysis sample.

This reassures us that a key predictor of the variation in our main analysis—whether

a graduate is a connected hire—is conditionally independent of whether a graduate is

included in the sample.

Table 7: Logit Regression: In-Sample and Connected Post-PhD affiliation

Dependent Variables: In sample Connected advisor
Model: (1) (2) (3) (4)

Fixed-effects
Field×5 Year Window Yes Yes Yes Yes
Field×N Papers PhD Decile Yes Yes Yes Yes
Field×N Citations PhD Decile Yes Yes Yes Yes
Subfield Yes Yes Yes Yes
Field×Advisor Citations Yes Yes Yes Yes
N PhD Connections Decile×Field Yes Yes
N Advisor Connections Decile×Field Yes Yes

Fit statistics
Pseudo R2 0.126 0.129 0.143 0.178
Observations 212,254 212,254 80,992 76,728

Notes: The unit of observation is a PhD graduate. Columns (1) and (2)
include all graduates linked to MAG and whose advisor also has been linked,
independently of their post-PhD affiliation. In columns (3) and (4), we use the
analysis sample, as in the main text.



B.2 Network connections and the first affiliation of PhD grad-

uates

In this section, we present additional results on the role of the PhD advisor’s co-author

connections and the matching of PhD graduates to universities.

B.2.1 Heterogeneity by field

Figure 7a displays the estimated coefficients for advisor connections along with their 95%

confidence intervals by field. Due to the limited sample size, we do not report results for

History, Art, and Philosophy. The estimates correspond to the specification reported in

the last column of the first panel of Table 2. Fields are ordered by the point estimate on

“Advisor Connection”, with Mathematics and Physics at the top, showing an estimated

coefficient close to 1, decreasing to just above 0.4 for political science.

In Panel 7b, we present the average number of advisor-connected affiliations by field,

which shows no systematic relationship with the estimated coefficients.

The results reveal heterogeneity in the estimated effect of advisor connections on

placement across fields, but the estimated effect is significantly positive in all cases.

(a) Multinomial Logit: Advisor Connection
Coefficient (b) N Advisor Connected Universities

Figure 7: Matching PhD Graduates to Universities by Field: Advisor Connections

53



B.2.2 Placebo advisor analysis

Our main results highlight the role of the PhD advisor’s co-author connections for the

placement of PhD students. Here, we present a placebo analysis by repeating the

matching analysis with a "placebo advisor." To do so, we randomly draw another advisor

from the graduate’s PhD class and repeat the estimation of equation (1) in the main

text with the placebo advisor’s connections. If the personal connection of the advisor

with the student is important, then the estimated effect should be substantially lower for

the placebo advisor. The placebo connections might pick up systematic matching based

on shared characteristics that unobserved to us. Table 8 shows the results. Placebo

connections predict a small decrease in the probability of matching, conditional on

controls in the main specification in column (6). The absolute values are small compared

to the main effect.

Table 8: Matching - Placebo connection

Dependent Variable: Match formed

Model: (1) (2) (3) (4) (5)

Variables

Advisor Connection 0.728 0.744 0.740 0.742 0.681

(0.024) (0.025) (0.025) (0.025) (0.023)

Placebo Advisor Connection 0.007 -0.045 -0.046 -0.046 -0.047

(0.024) (0.017) (0.017) (0.017) (0.017)

PhD connection 1.04 1.12 1.12 1.11 1.07

(0.038) (0.049) (0.049) (0.049) (0.048)

PhD Class×University ID Yes Yes Yes Yes

Advisor Citation Decile×University Citation Decile×Field Yes Yes Yes

Pre Graduation Productivity×University Citation Decile×Field Yes Yes

Connections Decile×University Citation Decile×Field Yes Yes

Varying Slopes

Max similarity to faculty members ×Field Yes

Avg similarity to faculty members ×Field Yes

Fit statistics

Observations 650,527 650,527 650,527 650,527 650,527

Notes: Placebo connections are constructed by randomly assigning a PhD graduate another "placebo" advisor from her PhD

class. The placebo advisor’s connections are then used as an additional type of network in equation (2).



B.2.3 Connections - Decay with time since last collaboration

In our main results, we considered co-author connections of the advisor independently of

the year of the collaboration. Here, we separate connections by the most recent year of

collaboration between the advisor and the co-author at another institution. We expect

connections further distant in the past to be weaker predictors of placement. Figure 8

shows the results by the difference between the year of graduation of the PhD graduate

and the most recent collaboration year of the PhD advisor and their connection. Years

since the last collaboration are binned into 3-year windows. The effect is strongest for

connections from collaborations in the 3 years preceding the year of graduation of the

focal PhD graduate and the point estimate decays almost linearly with time.

We see the year of most recent collaboration as a proxy for the strength of the

connection between the advisor and the co-author at another institution, as it relates

to how recent contact was. In line with that interpretation, the estimated effect of a

co-author connection decays with time since the last collaboration.

Figure 8: Matching: Advisor connection by most recent collaboration year

Estimates and associated 95 % confidence intervals of γ for the advisor’s network by distance of most
recent collaboration year to graduation year of focal PhD graduate.
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B.2.4 Topic Similarity measurement

We use the MAG field hierarchy to assign detailed topics to researchers’ output. In the

main analysis, we consider all fields up to level two. Here, we compare results when we

successively include all levels of the MAG field hierarchy.

Table 9: Matching - Topic similarity by maximum MAG field hierarchy level

Dependent Variable: Match formed

Model: (1) (2) (3) (4) (5)

Variables

Advisor connection 0.718 0.684 0.668 0.663 0.662

(0.024) (0.023) (0.023) (0.022) (0.022)

PhD connection 1.10 1.07 1.05 1.04 1.04

(0.049) (0.048) (0.048) (0.047) (0.048)

Fixed-effects

PhD Class×University ID Yes Yes Yes Yes Yes

Advisor Citation Decile×University Citation Decile×Field Yes Yes Yes Yes Yes

Pre Graduation Productivity×University Citation Decile×Field Yes Yes Yes Yes Yes

Connections Decile×University Citation Decile×Field Yes Yes Yes Yes Yes

Varying Slopes

Max similarity to faculty members (Lvl 1) (Field) Yes

Avg similarity to faculty members (Lvl 1) (Field) Yes

Max similarity to faculty members (Lvl 2) (Field) Yes

Avg similarity to faculty members (Lvl 2) (Field) Yes

Max similarity to faculty members (Lvl 3) (Field) Yes

Avg similarity to faculty members (Lvl 3) (Field) Yes

Max similarity to faculty members (Lvl 4) (Field) Yes

Avg similarity to faculty members (Lvl 4) (Field) Yes

Max similarity to faculty members (Lvl 5) (Field) Yes

Avg similarity to faculty members (Lvl 5) (Field) Yes

Fit statistics

Observations 650,527 650,527 650,527 650,527 650,527

When we increase the detail of the topic measurement of research by increasing the

maximum level from one to five in the MAG field hierarchy. The estimated coefficient

on connections changes slightly when adding level two but is almost constant afterward.

Thus, we report the estimate with topics up to level two of MAG field hierarchy in the
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main text.

B.2.5 Adding the interaction between PhD’s and Advisor’s connection

Here, we repeat the matching analysis presented in the main text but add the interaction

between the PhD’s and Advisor’s connection. This effectively separates the connection

status into three cases: only the advisor is connected, only the PhD graduate is connected,

and lastly, both are connected. The results are presented in Table 10.

The coefficient on the advisor connection is for the first case, the PhD connection

coefficient for the second case, and the sum of all three coefficients corresponds to the

third case.

This is useful to separate out to what extent the estimate on the advisor connection

may reflect the graduate’s own connections due to overlap. The advisor connection

estimates slightly increase compared to the main text (from 0.68 to 0.73). When both

the advisor and PhD graduate are connected, the estimated effect is somewhat smaller

when considering the interaction (0.73 + 1.8 − 1.03 = 1.5 instead of 0.684 + 1.07 = 1.754

in the main text). And lastly, the estimated coefficient for the case when only the PhD

is connected is substantially larger. However, this is quantitatively irrelevant, given it

applies to a very small number of cases. Thus, adding the interaction term does not

substantially alter the main results regarding advisor connections. Still, we consider the

interaction when calculating the overall predicted role of connections.
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Table 10: Matching results with interaction between PhD and advisor connection

Dependent Variable: Match formed

Model: (1) (2) (3) (4) (5)

Variables

Advisor connection 0.772 0.794 0.790 0.791 0.730

(0.025) (0.026) (0.026) (0.027) (0.024)

PhD connection 1.68 1.86 1.87 1.86 1.80

(0.055) (0.068) (0.069) (0.069) (0.069)

Advisor connection × PhD connection -0.899 -1.04 -1.05 -1.04 -1.03

(0.066) (0.079) (0.080) (0.080) (0.082)

Fixed-effects

PhD Class×University ID Yes Yes Yes Yes

Advisor Citation Decile×University Citation Decile×Field Yes Yes Yes

Pre Graduation Productivity×University Citation Decile×Field Yes Yes

Connections Decile×University Citation Decile×Field Yes Yes

Varying Slopes

Max similarity to faculty members ×Field Yes

Avg. similarity to faculty members ×Field Yes

Fit statistics

Observations 650,527 650,527 650,527 650,527 650,527
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B.2.6 Similarity descriptives and coefficients

In Table 11, we report the coefficients on the similarity controls that we omitted in Table

2. The coefficients for the topic similarity controls are shown in the first two columns. In

columns 3 and 4 we show the standard deviation of the similarity measures. We scale the

coefficients by the sample standard deviation of the similar measures in columns 5 and 6

to compare them to the estimated coefficients on network connections. The one-standard-

deviation scaled coefficients are almost all positive and range from approximately zero

to just above one. Thus, they are of similar magnitude as the estimated coefficients on

advisor connections. Importantly, the estimates show that the topic similarity measures

capture information relevant to matching.
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Table 11: Matching: Coefficients on similarity measures and their standard deviation

(1) (2) (3) (4) (5) (6)
Field Max similarity Avg similarity SD Max SD Avg Coef × SD Max Coef × SD Avg

Art -0.140 13.861 0.113 0.076 -0.016 1.060
(2.841) (9.263)

Biology 2.081 9.474 0.170 0.077 0.354 0.729
(0.164) (0.630)

Business 1.383 3.108 0.115 0.102 0.159 0.318
(0.317) (0.750)

Chemistry 1.371 12.277 0.125 0.061 0.172 0.748
(0.438) (1.538)

Computer Science 2.156 7.022 0.130 0.119 0.280 0.832
(0.470) (1.706)

Economics 0.920 4.040 0.102 0.086 0.094 0.346
(0.518) (1.478)

Engineering 0.990 6.963 0.111 0.048 0.110 0.337
(0.313) (1.072)

Environmental Science 2.542 4.742 0.147 0.108 0.375 0.511
(0.883) (2.042)

Geography 1.557 3.599 0.113 0.087 0.176 0.315
(1.051) (3.236)

Geology 2.331 5.101 0.151 0.086 0.351 0.440
(0.741) (2.074)

History 0.397 4.226 0.122 0.106 0.048 0.447
(1.077) (2.158)

Materials Science 1.941 17.823 0.115 0.062 0.223 1.107
(0.594) (3.128)

Mathematics 2.567 10.469 0.123 0.106 0.316 1.107
(0.397) (1.063)

Medicine 2.555 6.314 0.129 0.079 0.329 0.502
(0.272) (1.114)

Philosophy -1.023 21.934 0.090 0.059 -0.092 1.296
(3.847) (11.192)

Physics 5.125 5.769 0.174 0.102 0.891 0.591
(0.839) (1.261)

Political Science 1.296 1.510 0.131 0.119 0.170 0.179
(0.735) (1.118)

Psychology 2.603 5.584 0.142 0.174 0.369 0.974
(0.247) (0.534)

Sociology -0.714 4.670 0.114 0.088 -0.081 0.412
(0.781) (1.755)

Notes: The coefficients for the topic similarity controls are shown in the first two columns. They are estimated in the
regression presented in the last column in Table 2 Panel A. The standard errors of coefficients are in parentheses. In
columns 3 and 4 we show the standard deviations of the similarity measures. The "Coef × SD" columns multiply the
coefficient by one standard deviation of the similarity measure.
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B.2.7 Matching regression without PhD-class × Hiring University fixed ef-

fect

Our main analysis of matching between PhD graduates and universities includes a fixed

effect at the level of PhD class×Hiring University pair. This implies that only pairs

of PhD class×Hiring University with variation in connection status and outcome status

contribute to the estimation of the connection coefficient γ. For the remaining cases, the

fixed effect for PhD class×Hiring University perfectly explains the outcome, and thus,

they do not contribute to the estimation of γ. That is why the main analysis of matching

in the paper uses 650,000 dyads out of approximately 30,000,000 possible dyads. A dyad

is a pair of PhD graduate and hiring university.

Here, we repeat the analysis with separate fixed effects for PhD class and hiring

university. This allows the inclusion of almost all dyads in the regression, as now it is

only required that there is variation in connection status and outcomes within the hiring

university and separately within PhD class. This is true for most possible dyads.

P (di,j = 1) = e(ϕj+βXi,j+γAi,j)∑
j′ eϕj′ +βXi,j′ +γAi,j′

. (6)

The results from the regression with just the fixed effect for the hiring university ×

Field × 5-year window are shown in Table 12 in column 2. We also add a fixed effect

for the interaction between the rank of the PhD granting university and the rank of the

hiring university in column 3. Similar to the main results in the paper, in Table 2, the

estimated coefficient is stable across specifications (starting with column 2). However,

the point estimate is larger compared to the main results. This can be due to the different

fixed effects or the larger sample. To determine which explanation applies, we show the

results with similarity controls for the extended sample in column 5 and the smaller

sample used in the main analysis in column 6. The estimate in column 6 is very close

to the main estimate. This suggests that the fixed effect for the interaction between

PhD class and hiring university does not alter the estimate much but that the estimate

depends on the sample. In particular, the estimate is larger in the extended sample.

Thus, our main estimates are conservative regarding the role of co-author connections for
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placement.

Table 12: Multinomial Logit without interacted PhD class×Hiring University fixed effect

Dependent Variable: Match formed
Model: (1) (2) (3) (4) (5) (6)

Variables
Advisor connection 2.09 1.21 1.20 1.16 1.11 0.664

(0.055) (0.031) (0.031) (0.031) (0.029) (0.021)
PhD connection 1.45 1.06 1.05 1.00 0.939 1.01

(0.046) (0.054) (0.054) (0.053) (0.052) (0.040)

Fixed-effects
University ID×Field×5-Year Window Yes Yes Yes Yes Yes
PhD University Citation Decile×University Citation Decile×Field Yes Yes Yes Yes
Advisor Citation Decile×University Citation Decile×Field Yes Yes Yes
Pre Graduation Productivity×University Citation Decile×Field Yes Yes Yes
Connections Decile×University Citation Decile×Field Yes Yes Yes

Varying Slopes
Max similarity to faculty members×Field Yes Yes
Avg similarity to faculty members×Field Yes Yes

Fit statistics
Observations 28,564,555 28,564,555 28,564,555 28,564,555 28,564,555 650,519

Notes: Unit of observation is a pair of PhD graduate and a hiring university. See equation (2) for the multinomial logit specification. Clustered (PhD
university×Field×5 year window + hiring university) standard-errors in parentheses

B.3 Post-PhD outcomes

B.3.1 Post-PhD outcomes without controls

In the main text, we presented results for most post-PhD outcomes only with controls.

Here, we present the results without the controls for pre-graduation productivity of

the PhD student and their advisor. These additional results show the controls’ role

in explaining the differences between connected and non-connected hires. Pre-graduation

productivity predictors are informative about citations and the number of papers post-

PhD, but less so for the remaining outcomes. This is also true for the coefficients on

connections, i.e., they hardly change for the remaining outcomes.
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Table 13: Post-PhD outcomes of connected vs. not-connected hires without controls

Panel A: Comparison of post-PhD outcomes with Class Fixed Effect

Dependent Variables: N Cites PhD graduate N papers Co-authors Same Affil Any output N Cites of
First Affil PhD+6yrs PhD+6yrs First Affil

Model: (1) (2) (3) (4) (5) (6)

Variables
Advisor connection 0.238 0.109 0.204 -0.143 -0.002 0.523

(0.021) (0.011) (0.019) (0.013) (0.004) (0.080)
PhD connection 0.232 0.195 -0.014 -0.514 -0.008 0.019

(0.030) (0.016) (0.032) (0.032) (0.006) (0.041)

Fixed-effects
PhD Class Yes Yes Yes Yes Yes Yes
Subfield (MAG lvl 1) Yes Yes Yes Yes Yes Yes

Fit statistics
Pseudo R2 0.43 0.24 0.34 0.04 0.01 0.74
Observations 82,141 82,279 77,484 79,895 81,771 82,092

Panel B: Comparison of post-PhD outcomes with Destination Fixed Effect

Dependent Variables: N Cites PhD graduate N papers Co-authors Same Affil Any output
First Affil PhD+6yrs PhD+6yrs

Model: (1) (2) (3) (4) (5)

Variables
Advisor connection 0.117 0.058 0.036 -0.059 -0.003

(0.022) (0.009) (0.013) (0.012) (0.004)
PhD connection 0.208 0.177 -0.008 -0.469 -0.011

(0.026) (0.014) (0.028) (0.037) (0.007)

Fixed-effects
Field×5 Year Window Yes Yes Yes Yes Yes
Hiring University Id×Field × 5 year window Yes Yes Yes Yes Yes
Subfield (MAG lvl 1) Yes Yes Yes Yes Yes

Fit statistics
Pseudo R2 0.51 0.32 0.36 0.06 0.01
Observations 81,660 82,279 67,755 75,833 80,463

Panel C: Comparison of post-PhD outcomes with Class and Destination Fixed Effect

Dependent Variables: N Cites PhD graduate N papers Co-authors Same Affil Any output
First Affil PhD+6yrs PhD+6yrs

Model: (1) (2) (3) (4) (5)

Variables
Advisor connection 0.080 0.049 0.029 -0.067 -0.006

(0.023) (0.010) (0.017) (0.013) (0.005)
PhD connection 0.218 0.179 -0.006 -0.485 -0.010

(0.029) (0.018) (0.036) (0.039) (0.007)

Fixed-effects
PhD Class Yes Yes Yes Yes Yes
Hiring University Id×Field × 5 year window Yes Yes Yes Yes Yes
Subfield (MAG lvl 1) Yes Yes Yes Yes Yes

Fit statistics
Pseudo R2 0.63 0.40 0.44 0.08 0.02
Observations 81,614 82,279 66,551 74,276 80,151

Notes: We repeat the analysis presented in Table 3 without the pre-graduation productivity controls.



B.3.2 Time trends in post-PhD outcomes of connected vs. non-connected

graduates

In table 14, we report the results from estimating equation (5). We test whether the

differences between connected and non-connected graduates has changed over time.

We report the results that include fixed effects for both the destination and the class.

For all the outcomes, we find no significant changes in the gap between graduates placed

through the network and graduates not placed through the network.
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Table 14: Time trends in post-PhD outcomes of connected and non-connected graduates

Dependent Variables: N Cites PhD graduate N papers Co-authors Same Affil Any output
First Affil PhD+6yrs PhD+6yrs

Model: (1) (2) (3) (4) (5)

Variables
Advisor connection ×(t − 1990) 0.003 0.002 0 0.0008 0.0003

(0.003) (0.002) (0.003) (0.002) (0.0008)
PhD connection ×(t − 1990) 0.005 -0.002 0.008 0.009 0.004

(0.005) (0.002) (0.005) (0.005) (0.001)

Fixed-effects
PhD Class Yes Yes Yes Yes Yes
Hiring University Id×Field×5 year window Yes Yes Yes Yes Yes
Pre Graduation Productivity×Field Yes Yes Yes Yes Yes
Advisor Citation Decile×Field Yes Yes Yes Yes Yes
Subfield (MAG lvl 1) Yes Yes Yes Yes Yes
(t − 1990) ×Field Yes Yes Yes Yes Yes
Advisor connection×Field Yes Yes Yes Yes Yes
PhD connection×Field Yes Yes Yes Yes Yes

Fit statistics
Pseudo R2 0.68 0.43 0.46 0.09 0.02
Observations 81,614 82,279 66,551 74,276 80,151

Notes: Results from estimating equation (5). Values smaller than 1e − 5 reported as 0.

65



B.3.3 Topical Fit and post-PhD productivity

We repeat the analysis of the results in the main text regarding post-PhD productivity,

but we now also control for two measures of topical fit between the PhD graduate and

the first affiliation.

The results shown in Table 15 are very similar to the results in the main text. We

again show the results from the main text in columns 1-3 and repeat the same analysis

controlling for topical fit in columns 4-6. The results show that while topical fit predicts

output, it only explains a small part of the differences in output between connected

and not-connected hires. The point estimates for the gap in output between connected

and not-connected hires are slightly smaller. Still, the difference in coefficients is small

economically, approximately 1-2 log points, compared to baseline differences of 9-26

log points. Further, standard errors are of similar magnitude as the differences across

specifications, about 2 log points; thus, the coefficients are not significantly different.

Nevertheless, topical fit predicts post-PhD output; the reported pseudo R2 increases by

about 0.03-0.05 depending on the specification.
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Table 15: Post-PhD outcomes of connected vs. not-connected hires and topic
similarity

Panel A: Comparison of post-PhD outcomes with Class Fixed Effect
Dependent Variable: N Cites PhD graduate
Model: (1) (2) (3) (4) (5) (6)

Variables
Advisor connection 0.238 0.172 0.121 0.217 0.157 0.106

(0.021) (0.019) (0.019) (0.021) (0.019) (0.019)
PhD connection 0.232 0.027 0.045 0.212 0.010 0.029

(0.030) (0.030) (0.029) (0.031) (0.030) (0.029)

Fixed-effects
PhD Class Yes Yes Yes Yes Yes Yes
Subfield Yes Yes Yes Yes Yes Yes
Pre Graduation Productivity×Field Yes Yes Yes Yes
Advisor Citation Decile×Field Yes Yes

Varying Slopes
Max similarity to faculty members×Field Yes Yes Yes
Avg similarity to faculty members×Field Yes Yes Yes

Fit statistics
Pseudo R2 0.43 0.51 0.52 0.44 0.51 0.52
Observations 82,141 82,141 82,141 82,141 82,141 82,141

Panel B: Comparison of post-PhD outcomes with Destination Fixed Effect

Dependent Variable: N Cites PhD graduate
Model: (1) (2) (3) (4) (5) (6)

Variables
Advisor connection 0.117 0.059 -0.013 0.118 0.061 -0.011

(0.022) (0.020) (0.021) (0.021) (0.020) (0.020)
PhD connection 0.208 0.014 0.039 0.203 0.009 0.035

(0.026) (0.025) (0.025) (0.026) (0.025) (0.025)

Fixed-effects
Hiring University Id×Field × 5 year window Yes Yes Yes Yes Yes Yes
Subfield (MAG lvl 1) Yes Yes Yes Yes Yes Yes
Pre Graduation Productivity×Field Yes Yes Yes Yes
Advisor Citation Decile×Field Yes Yes

Varying Slopes
Max similarity to faculty members×Field Yes Yes Yes
Avg similarity to faculty members×Field Yes Yes Yes

Fit statistics
Pseudo R2 0.51 0.57 0.58 0.51 0.57 0.58
Observations 81,660 81,660 81,660 81,660 81,660 81,660

Notes: We show again columns (1) to (3) of Table 3 and in columns (4) to (6) we add controls for topic
similarity. We omit Panel C for brevity, which shows very similar results.



B.3.4 Heterogeneity by Field

The main results reported in Table 3 reflect the average gap between connected and

not-connected hires in outcomes across all fields. Here we present the main results,

columns (1) and (3) of Panel B in Table 3 across fields. Figure 9 shows that the main

results are roughly similar across fields, that is network hires tend to be positively selected

within hiring universities. And observable information eliminates most of the productivity

premium. Social sciences tend to have a positive productivity premium of network hires

even after controls, while for physics, engineering and math the point estimates turn

negative.

Figure 9: Post-PhD Citations: Advisor Connection coefficient by Field
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B.3.5 Robustness Paper Counts

The main analysis of post-PhD outcomes of PhD graduates uses documents independent

of (i) their language and (ii) whether there are multiple versions of the same document

recorded in MAG.

First, we use the fasttext package in Python (Joulin et al., 2016) to predict the

language of a document based on its title and repeat the analysis only for English-

language documents.

Second, we restrict the documents to those that are the main documents of a Paper

Family. A Family is defined by MAG, and FamilyIds are assigned to documents of which

multiple versions exist, e.g., a pre-print and a published version (Sinha et al., 2015). We

keep only documents that are the sole or the main document of their Family.

We report the results in Table 16. The results are almost unchanged when keeping

only English language papers (columns 2 and 5) and keeping only the main document

of a Paper Family (columns 3 and 6). Thus, our results are robust against concerns (i)

regarding translations of documents and (ii) double-counting pre-prints and published



papers.

Table 16: Post-PhD outcomes robustness Paper Types

Panel A: Comparison of post-PhD outcomes with Class Fixed Effect

Dependent Variables: N Cites N Cites N Cites N Papers N Papers N Papers
only English only Main Paper only English only Main Paper

Model: (1) (2) (3) (4) (5) (6)

Variables
Advisor connection 0.121 0.121 0.118 0.061 0.060 0.060

(0.019) (0.019) (0.019) (0.010) (0.010) (0.010)
PhD connection 0.045 0.045 0.044 0.053 0.053 0.053

(0.029) (0.029) (0.030) (0.015) (0.015) (0.015)

Fixed-effects
PhD Class Yes Yes Yes Yes Yes Yes
Subfield (MAG lvl 1) Yes Yes Yes Yes Yes Yes
Pre-Graduation Productivity×Field Yes Yes Yes Yes Yes Yes
Advisor Citation Decile×Field Yes Yes Yes Yes Yes Yes

Fit statistics
Pseudo R2 0.52 0.51 0.51 0.30 0.30 0.30
Observations 82,141 82,131 82,141 82,279 82,274 82,279

Panel B: Comparison of post-PhD outcomes with Destination Fixed Effect
Dependent Variables: N Cites N Cites N Cites N Papers N Papers N Papers

only English only Main Paper only English only Main Paper
Model: (1) (2) (3) (4) (5) (6)

Variables
Advisor connection -0.013 -0.014 -0.016 0.018 0.017 0.018

(0.021) (0.021) (0.021) (0.009) (0.009) (0.009)
PhD connection 0.039 0.040 0.038 0.048 0.048 0.047

(0.025) (0.025) (0.026) (0.013) (0.013) (0.013)

Fixed-effects
Hiring University Id×Field × 5 year window Yes Yes Yes Yes Yes Yes
Subfield (MAG lvl 1) Yes Yes Yes Yes Yes Yes
Pre-Graduation Productivity×Field Yes Yes Yes Yes Yes Yes
Advisor Citation Decile×Field Yes Yes Yes Yes Yes Yes

Fit statistics
Pseudo R2 0.58 0.58 0.58 0.37 0.37 0.37
Observations 81,660 81,608 81,657 82,279 82,250 82,279

Notes: Robustness check of results in Table 3, Panel A and B, restricting the analysis to only English documents and the main/sole document in
a MAG Family of papers.
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B.3.6 Robustness network controls

In our main analysis, we consider co-author connections of collaborations up to 20 years

before the graduation year of the PhD student. This implies that more senior advisors

have had more time to form co-author connections. Thus, it would be possible that more

senior advisors are better at mentoring PhD students, implying their students perform

better. However, they also have larger networks, thus implying that their students

are more likely to end up at a connected affiliation. Hence, network hires outperform

because they overrepresent graduates with more senior, better mentors. This performance

premium would be there even if they were placed outside their advisor’s network. To

account for this, we repeated the analysis of the post-PhD outcomes and controlled for

the network size. The results are unchanged; thus, attributes that co-vary with the size

of the network should not be a threat to our main analysis. The results are shown in

Table 17.

Table 17: Post-PhD outcomes robustness network controls

Dependent Variables: N Cites PhD graduate N papers Co-authors Same Affil Any output
First Affil PhD+6yrs PhD+6yrs

Model: (1) (2) (3) (4) (5) (6) (7)

Variables
Advisor connection 0.117 0.055 -0.015 0.010 -0.0001 -0.069 -0.009

(0.022) (0.020) (0.019) (0.009) (0.014) (0.012) (0.005)
PhD connection 0.208 -0.010 0.022 0.018 -0.093 -0.475 -0.033

(0.026) (0.025) (0.025) (0.013) (0.027) (0.036) (0.007)

Fixed-effects
Hiring University Id×Field × 5 year window Yes Yes Yes Yes Yes Yes Yes
Subfield Yes Yes Yes Yes Yes Yes Yes
Pre-Graduation Productivity×Field Yes Yes Yes Yes Yes Yes
PhD Connections Decile×Field Yes Yes Yes Yes Yes Yes
Advisor Citation Decile×Field Yes Yes Yes Yes Yes
Advisor Connections Decile×Field Yes Yes Yes Yes Yes

Fit statistics
Observations 81,660 81,660 81,660 82,279 67,755 75,833 80,463
Pseudo R2 0.51 0.57 0.59 0.36 0.38 0.06 0.01

Notes: Robustness check of results in Table 3. We add a control for the size of the network to account for the possibility that PhD
graduates with more connected advisors outperform independently of whether they end up being a connected hire.



C Regression Framework - Matching

C.1 Multinomial Logit and Poisson

We show that the multinomial logit model in equation (2) is equivalent to a Poisson

regression in the sense that it delivers the same parameter estimates. To do that, we show

that the likelihood of the quasi-maximum likelihood Poisson regression is the same as that

of the multinomial logit if one includes a fixed effect for each graduate in the Poisson

regression. Notation and derivation of the likelihood of the multinomial logit and Poisson

models follow Wooldridge (2010). The well-known equivalence of the two likelihoods,

once one includes a fixed effect for each choice set, follows Guimaraes, Figueirdo and

Woodward (2003).

Consider an additive random utility model, that gives rise to the multinomial logit

setup, where a (potential) match between graduate i and university j has value

vij + εij = αc(i),j + βXij + γAij + 1
κ

εij, εij ∼ Gumbel.

Then the choice probability of graduate i choosing j out of potential universities

j′ = 1, . . . , J follows

P (i match j) = evij∑J
j′=1 evij′

.

The multinomial logit likelihood for a set of graduates i = 1, . . . , N and universities

j = 1, . . . , J is given by:

LML =
N∏

i=1

J∏
j=1

P (i match j)dij ,

where dij is a binary indicator that takes the value 1 if graduate i matches with

university j and 0 otherwise. Taking the log of this likelihood function, we obtain the

log-likelihood:

log LML =
N∑

i=1

J∑
j=1

dij log P (i match j),
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Substituting the expression for P (i match j), the log-likelihood becomes:

log LML =
N∑

i=1

J∑
j=1

dij

vij − log
J∑

j′=1
evij′

 .

Now, consider the Poisson likelihood with a fixed effect at the individual level i. The

expected number of matches for a pair i, j follows

µij = eϕi+vij ,

and thus the log likelihood for observation i,j follows

lij = dij log(µij) − µij,

the log likelihood for individual i then follows

li =
J∑

j=1
dij log(µij) − µij,

and the overall log likelihood for the sample

log LP =
N∑

i=1

J∑
j=1

dij log(µij) − µij

Let’s plug in the expected number of matches

log LP =
N∑

i=1

J∑
j=1

dij (ϕi + vij) − eϕi+vij .

Regroup terms to get

log LP =
N∑

i=1

J∑
j=1

dijvij + dijϕi − eϕi+vij .

Now concentrate out the individual fixed effect as Guimaraes, Figueirdo and Wood-

ward (2003). The first order condition with respect to ϕi is
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∂ϕi
log LP =

J∑
j=1

dij −
∑

j

eϕi+vij = 0,

so ϕi solves

eϕi = 1∑J
j=1 evij

,

which we plug back into the Poisson likelihood:

log LP =
N∑

i=1

J∑
j=1

[
dijvij + dij log

(
1∑J

j′=1 evij

)
− evij∑J

j′=1 evij

]
.

Using that ∑J
j=1

evij∑J

j′=1 evij
= 1, that is each graduate matches with one university, we

obtain

log LP =
N∑

i=1

J∑
j=1

dij

vij − log
J∑

j′=1
evij

− NJ.

Thus, log LP + const = log LML, i.e. the likelihoods are equal up to a constant. It

follows directly that the estimates from either approach are identical.

C.2 Matching models and Poisson Regression

The connection between matching models based on Choo and Siow (2006) and Poisson

regression is nicely summarized by Theorem 4 in Galichon and Salanié (2024). They

show that a Poisson regression can be used to estimate matching models based on Choo

and Siow (2006), as the Poisson regression is equivalent to popular moment matching

estimators.

In the following, we illustrate that the equilibrium allocation of Dupuy and Galichon

(2014), a version of Choo and Siow (2006) with continuous attributes, is consistent with

a Poisson regression. Note that we do not aim to estimate a matching model’s full set

of parameters but to document differences in matching patterns between connected and

unconnected pairs while employing an approach consistent with systematic matching.

Consider the problem of matching PhD graduates i, whose characteristics can be

summarized by a vector xi, and universities j, whose characteristics can be summarized
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by a vector yj. Define vij as the systematic surplus of a match between graduate i and

university j. Further, assume that surplus does not directly depend on the identities,

that is vi,j = v(xi, yj).

In combination with standard assumptions on idiosyncratic tastes, following a Gumbel

distribution, one obtains logit demands for either side of the market and an equilibrium

density of matches that is log-linear in systematic surplus. Theorem 1 in Dupuy and

Galichon (2014) summarizes the equilibrium allocation, and therein, equation 9 describes

the equilibrium density π(x, y):

π(x, y) = exp
(

v(x, y) − a(x) − b(y)
σ

)
. (7)

This result is important, as it implies that i) a Poisson regression/multinomial logit

estimation is consistent with the functional form of equilibrium matching and ii) including

a graduate’s fixed effect accounts for a(x) and including a fixed effect for each choice

option accounts for b(y).

To clarify those points, consider (7) and parametrize v(xi, yj) = β̃c(i),j + δXij + γAij.

Then the probability of matching follows

P (dij = 1) = π(xi, yj) = exp
(

β̃c(i), j + βXij + γAij − a(xi) − b(yj)
σ

)
(8)

αi = −a(xi) (9)

βc(i),j = β̃c(i), j − b(yj) (10)

P (dij = 1) = exp
(

αi + βc(i),j + βXij + γAij

σ

)
, (11)

which implies our empirical strategy estimates γ
σ
. This is the correct estimand, as γ

σ
tells

us how much the probability to match changes with a connection Ai,j conditional on

attributes and equilibrium values.
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C.3 Counterfactual Matching probability - Multinomial logit

Based on the estimated multinomial logit model, we quantify how much the predicted

probability of matching any of the connected universities would change if the connections

were absent.

The predicted probability of graduate i and university j matching is

P̂ (di,j = 1) = eβ̂c(i),j+γ̂Ai,j+δ̂Xi,j∑
j′ eβ̂c(i),j′ +γ̂Ai,j′ +δ̂Xi,j′

, (12)

where Ai,j is an indicator variable that takes value one if the graduate i is connected to

university j and zero otherwise.

The connected set of universities is Ji,A=1 = {j : Ai,j = 1} and the unconnected set

Ji,A=0 is defined analogously. We rewrite the denominator by splitting the sum into the

connected and unconnected set

P̂ (di,j = 1) = eβ̂c(i),j+γ̂Ai,j+δ̂Xi,j∑
j′∈Ji,A=1 eγ̂eβ̂c(i),j′ +δ̂Xi,j′ +∑

j′∈Ji,A=0 eβ̂c(i),j′ +δ̂Xi,j′
. (13)

We consider a connected university and calculate how much the predicted probability

would change if one removes all connections.

P̂ A=0
i,j = eβ̂c(i),j+δ̂Xi,j∑

j′∈Ji,A=1 eβ̂c(i),j′ +δ̂Xi,j′ +∑
j′∈Ji,A=0 eβ̂c(i),j′ +δ̂Xi,j′

(14)

The predicted probability to match with any university in the connected set JA=1 is

P̂i,j∈JA=1 =
∑

j∈JA=1

eβ̂c(i),j+γ̂Ai,j+δ̂Xi,j∑
j′ eβ̂c(i),j′ +γ̂Ai,j′ +δ̂Xi,j′

. (15)

Next we split the sum in the denominator into the connected and unconnected set as

well and take γ̂Ai,j outside the sum, as Ai, j is constant within the connected, unconnected

set, respectively. Further, the denominator is constant across j. Thus, we can take the
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sum of the numerator and divide by the denominator afterwards

P̂i,j∈JA=1 = eγ̂

∑
j∈JA=1 eβ̂c(i),j+δ̂Xi,j

eγ̂
∑

j′∈Ji,A=1 eβ̂c(i),j′ +δ̂Xi,j′ +∑
j′∈Ji,A=0 eβ̂c(i),j′ +δ̂Xi,j′

(16)

p̂1,i =
∑

j∈JA=1

eβ̂c(i),j+δ̂Xi,j (17)

p̂0,i =
∑

j∈Ji,A=0

eβ̂c(i),j+δ̂Xi,j (18)

P̂i,j∈JA=1 = eγ̂ p̂1,i

eγ̂ p̂1,i + p̂0,i

. (19)

Now we calculate the predicted probability to match any affiliation in the connected

set when all connections would be absent:

P A=0
i,j∈JA=1

=
∑

j∈JA=1

eβ̂c(i),j+δ̂Xi,j∑
j′∈Ji,A=1 eβ̂c(i),j′ +δ̂Xi,j′ +∑

j′∈Ji,A=0 eβ̂c(i),j′ +δ̂Xi,j′
(20)

P̂ A=0
i,j∈JA=1

= p̂1,i

p̂1,i + p̂0,i

(21)

Now we express P̂ A=0
i,j∈JA=1

as a function of predicted probabilities

e−γ̂P̂i,j∈JA=1 = p̂1,i

eγ̂ p̂1,i + p̂0,i

(22)

P̂i,j∈JA=0 = p̂0,i

eγ̂ p̂1,i + p̂0,i

(23)

e−γ̂P̂i,j∈JA=1

e−γ̂P̂i,j∈JA=1 + P̂i,j∈JA=0

= p̂1,i

p̂1,i + p̂0,i

(24)

P̂ A=0
i,j∈JA=1

= e−γ̂P̂i,j∈JA=1

e−γ̂P̂i,j∈JA=1 + P̂i,j∈JA=0

(25)

To approximate the role of co-author connections for placement in the connected set

we use the last line and evaluate it at the sample shares of hires in the connected set

combined with the estimates for γ.
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